
The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 1

The Define.xml Designer 2022

User Manual for designing and developing Define.xml files

Last update: 2022-09-07

IntroductionIntroductionIntroduction

This user manual describes the features for designing and developing define.xml 2.0 and 2.1 files
using the "Define.xml Designer" software package. For information about designing ODM Study
design files, please see the separate user manual for the "ODM Designer" software.

BackgroundBackgroundBackground

CDISC SDTM, SEND and ADaM electronic submissions to regulatory authorities such as the US
FDA, the Japanese PMDA and Chinese NMPA, require a "define.xml" file to accompany the
submission files. The define.xml file contains the metadata (data about data) of the information in
the submission files. As such, a well designed define.xml file is of utmost importance for
explaining the reviewers about what the data is about and how it was generated.
The define.xml file is an XML file that is as well human-readable as well as machine-readable. The
human readability is ensured by a so called "stylesheet" (XSLT stylesheet), that transforms the
XML into information that is interpretable by any modern browser (HTML+CSS).

It is however essentially the define.xml file itself (i.e. the XML) that carries the information - what
is seen in the browser is just a human understandable presentation of that data1.

Although XML is very easy to learn, many people desire to use a good software tool to design or
develop a define.xml file describing the contents of their electronic submission, which does not
require them to write XML. The "Define.xml Designer 2022" is such a tool.

Ideally, the define.xml file is already developed before study start or in the early stages of a clinical
study. The reason for this is that the most important goal of a (commercial) clinical study is to get a
marketing authorization for the drug or therapy that is tested. So it is of utmost importance to
already test whether the during the study captured data can be transformed to SDTM, SEND or
ADaM (for the latter from SDTM). If it is found that this is not possible at the end of the study, then
the whole submission is endangered.
Many pharma companies already develop their mapping to SDTM together with the corresponding
define.xml even before study start. The ideal tool to do so is XML4Pharma's SDTM-ETL software,
allowing s users to develop the mapping to SDTM starting from an ODM file with the study design.
The SDTM-ETL software is also used a lot for SEND submissions. In that case, when no ODM file
is available, it can be generated from "flat" files such as CSV files using the "ODM Generator"
software.

There are however cases where such a synchronized (SDTM + define.xml) approach is not possible.
This is especially the case for legacy studies where the SDTM files have already been generated
and where the define.xml must be generated "post-SDTM". This often also applies to SEND and
ADaM files.

1A stylesheet could even be used to manipulate the information as seen in the browser. Therefore, the "truth" is what is
in the define.xml file, not what is seen in the browser.

http://www.xml4pharma.com/SDTM-ETL/
http://www.xml4pharma.com/CDISC_ODM_Generator/index.html

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 2

Another case is when the user wants to start from a specific SDTM-IG and corresponding
define.xml template file, and then add/remove variables and add all other information, adapting the
define.xml to the needs of a specific study or submission. For example, many sponsors already do
develop a define.xml as a specification to their third party service provider, containing the
information how the sponsor wants to obtain the SDTM data files for a specific study at the end of
the study. A third use case is that the user obtains a define.xml that is incomplete, is not correct, or
does not well explain the submission to the regulatory reviewer.

These use cases are covered by the "Define.xml Designer 2022". This includes the almost-
automated generation of a define.xml file starting from a set of SAS Transport 5 ("XPT") files.

This manual describes how the "Define.xml Designer 2022" is used for these three and other use
cases. No knowledge of XML is required. It is however recommended that the user has a basic
understanding of the goals and structure of define.xml. This can be obtained by reading the
define.xml specification (a copy is included with the distribution) and/or attending a one-day
CDISC define.xml training. The latter will make you a Define-XML expert, allowing you (when
using this software) to develop jewel define.xml files that very well explain the regulatory
reviewers what your data is about, how it was generated, and how it is organized.

It is recommended to not use "black box" tools, i.e. tools that let you start e.g. from an Excel
worksheet, and "magically" generate a define.xml file from your information in the worksheet. This
kind of tools force you to re-generate the define.xml file each time something is not perfect in the
result (as displayed by the browser!). Furthermore, they give you no insight into the define.xml that
is generated, so essentially, you are not understanding what you are doing. This will usually lead to
disaster...

http://cdisc.org/define-xml
http://cdisc.org/Education
http://cdisc.org/Education
http://cdisc.org/Education

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 3

Table Table Table of of of ContentsContentsContents
Introduction.. 1
Background .. 1
Starting the software and main principles.. 4
Creating a new define.xml ... 13

Creating a define.xml starting from an SDTM/SEND/ADaM template.. 15
Creating a define.xml starting from an existing set of SAS-XPT files.. 26

Ordering the dataset definitions ... 44
Adding and subsetting CDISC Controlled Terminology ... 46
Adding and subsetting codelists from SAS-XPT files... 59
Transforming an "EnumeratedItem" CodeList into a "CodeListItem" CodeList 67
Displaying your define.xml as HTML in a browser using a stylesheet... 71
Creating and populating Sponsor-defined Codelists.. 72
Cleaning up your define.xml.. 79
Saving your work to file .. 81
Creating ValueLists .. 84
Automatically assigning WhereClauses to ValueList entries .. 98
Annotated CRF and Supplemental Documents ... 103
Assigning valuelists to SDTM/SEND/ADaM variables.. 107
Assigning an Origin to variables.. 110
Retrieving PDF Page Numbers from the annotated CRF .. 117

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 4

Starting the software and main principlesStarting the software and main principlesStarting the software and main principles

ODM Designer
If you are a windows user, double-click the "Define-XML_Designer.bat" icon or entry in your file
explorer. If you are a Linux or MacIntosh user, use the Define-XML_Designer.sh" entry. First,
license information will be displayed, followed by the dialog:

The software still supports define.xml 1.0, but it is strongly recommended to use define.xml 2.0 or
2.1 as this allows you to much better explain the contents and structure of your submission to the
regulatory reviewers. Define.xml 1.0 is also not accepted by the FDA anymore.

Also, most of the new features have not been implemented for Define-XML 1.0 anymore.

If you also want to implement the "Analysis Result Metadata" extension, select the raiobutton
"Define.xml 2.1 ADaM with Analysis Results Metadata". This will work with Define-XML 2.1.

After having clicked the "OK" button, the software starts reading the corresponding Define-XML
XML-Schema, and generates the graphical user interface elements automatically from the XML-
Schema. This e.g. results in:

The "Study Name", "Study Description" and "Protocol Name" already allow you to add some
mandatory information. Whereas the "Study Name" and "Study Description" items are self-
explaining, the "Protocol Name" is expected the contain the "The sponsor’s internal name assigned
to the Study" which usually is the title of the protocol.
Let us however first have a look at the "Options". To do so, use the menu "Options - Settings".

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 5

This opens a new dialog:

We will now discuss the most important options and settings.

– Usually you will want to have the software remember the last used import (file read) or
export (file write) directory. You can disable this feature by unchecking the checkbox
"Remember last used directory"

– The feature "Show value as tooltip in table cells" is very useful when there are many
columns, and you don't want to start dragging column borders to see the complete value.
The feature is enabled by default, but can be switched off.

– The wizard for "TranslatedText" (i.e. for support of multiple languages) can be disabled
using the checkbox "Use classic mechanism for TranslatedText wizard".
You probably however want to use the wizard...

– When adding text that goes within "TranslatedText", a separate small text window shows up
for adding the text. If the user does not want this, but wants to add the text directly in the
table cell, then the checkbox "Use text window for TranslatedText content" should be
unchecked.

– The following option is a very important one: the software will save the full study or
define.xml design to an define.xml or ODM file each 5 minutes in the directory "autosave".
This allows you to pick up an earlier version of your design. The files in this directory use a
naming convention for allowing the user to see when it has been created. For example:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 6

The time periods between an "autosave" can be changed by using the textfield after
"Number of minutes between define.xml autosave". Only positive numbers can be entered.
Setting the value to "0" means that no autosaving is done.
Please regularly have a look at the "autosave" directory and clean it up.

– The designer uses schematron technology during validation. This is the methodology of
choice for validating XML files. The software comes with a set of schematron files for as
well ODM as for define.xml. If you want to limit validation to XML-Schema validation and
hardcoded rules when doing "local" validation (see further), uncheck the checkbox "Use
schematron for local validation". You will also be able to make a choice when you start a
"local" validation (explained further on).

– Most people like to use "drag and drop". There are however some users that don't. If you are
one of these users, check the checkbox "disable drag-and-drop". The latter mechanism is
then replaced by a "select and click" mechanism.

– The last two checkboxes enable you to disable the wizards for the define.xml
"WhereClause" and "PDFPageRef". If you disable these, you will need to enter some
information manually (i.e. by typing). This requires a very good knowledge of define.xml.
Use with care!

http://schematron.com/an-overview-of-schematron/

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 7

Let us now go back to the main window that is displayed after the XML-Schema has been read and
the graphical user elements have been generated.

For example, for "Global Study Variables", you will find 3 tabs:

The currently selected tab is always colored yellow, a green tab means that it represents information
that must be entered, i.e. is mandatory.

Usually, a table is displayed below the tab name. In this case, there is only 1 row, as only 1
"StudyName" element is allowed in the define.xml file.

"Study Name" is a "text content only" element in XML. In order to enter that text, click the "+" icon
(the most left one):

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 8

This will result in a new window being displayed, allowing you to enter the study name. For
example:

After clicking "OK" (or hitting the Enter" key on the keyboard), the text also is displayed in the
table:

If the text is longer than the cell in the row allows, you can inspect the text by clicking on the
"magnifying glass" icon (second icon). This will show a dialog window:

In more complicated cases, such as when the ODM or define.xml element has attributes and/or
child elements, much more information will be displayed in this dialog window.

You can now add similar information for the tabs "Study Description" and "Protocol Name".

Let us now see how this works for an SDTM or SEND or ADaM variable. These, and all other
metadata of the submission can be added/edited after clicking the "Study Metadata" button. This
results in:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 9

(here for Define-XML 2.1).

To add an SDTM/SEND/ADaM variable, click the tab "Variable Definitions". This then displays
the following panel:

Initially, 10 rows are generated, but you can add additional rows (and you probably will) by
clicking the "Add Row" button.

In the table, each row corresponds to a single SDTM/SEND/ADaM variable, and each column to an
attribute for it. Adding child element information will be done by clicking the "+" icon on the left of
each row, and inspecting all the contents can be done by clicking the "magnifying glass" icon
(second from the left).

For a variable "BRTHDTC" (birthdate) in DM, a variable declaration will typically look like (for
define.xml 2.1):

Remark that "SASFieldName" is optional, and does not make sense when one does not use SAS to
generate the datasets.
We also deliberately added some invalid information, as a value for "Length" is not allowed when
the datatype is "date".

The "DataType" value is enumerated, so when clicking that cell, a list appears from which one
needs to select a single one from:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 10

The "Validate" button (in the lower part of the panel, on the right) can then be used to validate the
local contents. In our case this will lead to:

Two violations2 of the define.xml standard (2.1) have been found:
a) No "Description" child element was found. It represents the "label" of the variable
b) The "Length" attribute is not allowed when the DataType has the value "date"

We just "empty" the "Length" cell by selecting its contents and using the "delete" key on the
keyboard. The "Description", which is a child element of "ItemDef" (representing the
SDTM/SEND/ADaM variable label) can then be added by using the "+" icon:

As one sees, this table has several rows, as a description in several languages can be added. For a

2Remark that we do not speak of "Errors" and "Warnings" as such an assignment is completely arbitrary. We will only
speak about an "Error" when it is an XML-Schema error.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 11

submission to the FDA, at least an English description must be provided, which must match3 the
"label" from the SDTM-IG or SEND-IG or ADaM-IG which is "Date/Time of Birth" in this case.

Remark that this feature also allows to generate a define.xml with non-English labels, which may
become a requirement by e.g. the PMDA and NMPA in future.

We first want to add the language. Clicking in the first "Language" cell pops up a dialog:

from we click the "English" button and then click OK4. Resulting in:

Then clicking the cell under "TranslatedText" for the same row displays a text entry dialog:

3In future, we intent an option that automatically looks up the variable label for a given variable name and SDS version,
either locally (from a file that comes with the software), by a RESTful web service, or by a query to the CDISC
Library.

4This wizard was created so that users do not need to know the ISO language codes.

https://www.cdisc.org/cdisc-library
https://www.cdisc.org/cdisc-library

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 12

where we add the "SDTM label", in this case "Date/Time of Birth". After clicking "OK" leading to:

We could now add the description in other languages5, but this is usually not necessary in the case
of submissions to the FDA.

By now, you will probably have asked yourself the question: "will I really have to add all my
variable definitions manually for my SDTM/SEND/ADaM" submission?".
The answer is "No", as we will later learn how to start from an SDTMIG, SENDIG or ADAMIG
template to do all this for you.

After clicking the "OK" button:

we see that the "+" icon is now with a yellow background color, meaning that additional

5This is the reason why "Description" is not a field in the table for "Variable Definition", as it would then only be
possible to add a description in only one language.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 13

information has been added. The background color may also become red after validation, meaning
that the additionally added information does not conform to the Define-XML standard.

Clicking the "validate" button again leads to:

Essentially, this does not mean yet that everything is fully compliant. For example, at this moment,
the software does not know yet whether the variable "BRTHDTC" is a value-level variable or not,
so that for example the rule that the "Origin" must be declared either on the variable level or at the
value-level, cannot be checked yet.

So, the essentials again:

– Variable attributes are added by clicking the appropriate cell. In case the value is
enumerated, a "selection list" will be displayed. In some cases, a wizard will pop up.

– Additional information that is stored in child elements are added by clicking the "+" icon,
selecting a tab, and adding the information just like in the main panel. In some cases, one
will want to "drill down" into deeper levels and sub-dialogs. Examples will be provided later
on.

– "Local" validation can be done using the "validate" button. A short report will then be
displayed. In case a mandatory attribute is not populated, the field will be colored red.

– In case additional information has been added, the "+" icon is colored orange. It can turn to
red after validation in case the added information violates the Define-XML standard

Creating a new Creating a new Creating a new define.xmldefine.xmldefine.xml

Everything has a beginning...

Though designing define.xml files from scratch is easily possible, one may in many cases either
start from either an SDTM or SEND or even ADaM template6, or from a set of existing SAS-XPT
SDTM, SEND or ADaM files. The ideal is of course to have a process in place to develop the
mapping between operational data and SDTM/SEND data that is synchronized with the
development of the define.xml such as in the SDTM-ETL software.

In order to start the development of a new define.xml either from an SDTM or SEND template, or

6 In the case of ADaM, only tables for the basic datasets, such as ADSL, will be generated. The user can then add
additional dataset definitions and variables in the usual way.

http://www.xml4pharma.com/SDTM-ETL/

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 14

from a set of existing SAS-XPT files with SDTM or SEND data, use the menu "File - New
define.xml". The following dialog is presented:

Either click the checkbox "I want to start from a CDISC SDTM/SEND/ADaM template" or the
checkbox "I want to start from a set of SAS-XPT files". Also create a study OID (this is the Define-
XML identifier for the study, so one can use a "mnemonic" like "CES" for "CDISC Example
Study", or use an identifier that is used within your company), a study short name, a study
description and the protocol name or title.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 15

Creating a define.xml starting from an SDTM/SEND/ADaM templateCreating a define.xml starting from an SDTM/SEND/ADaM templateCreating a define.xml starting from an SDTM/SEND/ADaM template

In case you checked the checkbox "I want to start from a CDISC SDTM/SEND/ADaM template",
the following fields become visible and enabled:

One can then select a template from the list. It contains all necessary information from the SDTM-
IG or SEND-IG. One can later than still merge with another template. For example, if one has
selected "define_template_SDTMIG_3.2.xml", then one can later still merge with domains from the
"define_template_SDTM_3.2_AssociatedPersons" or even with templates for newly developed
SDTM domains published by CDISC. It is also very easy to develop own templates and then merge
them with CDISC-IG templates.
All these templates come as files with the software, and the content of the directory where they
reside is inspected by the software. This also means that once CDISC publishes a new
Implementation Guide, we will deliver the template file or files for it, and adding it to the directory
will suffice to be able to use them - no software update will be necessary.

Suppose we would like to use the latest SDTM version, so we select
"define_template_SDTMIG_3.4.xml". It is then also extremely useful to already add the latest by
CDISC published controlled terminology7. In order to do so, check the checkbox "I want to load by
CDISC published Controlled Terminology" and then select a version (probably the latest) from the
list. Also here, when new controlled terminology is published by CDISC, we will provide it as a
file, and adding it to the directory where the controlled terminology files reside will be sufficient to
let appear it in the list in the software.
Additional CDISC controlled terminology can also be loaded separately (see further on) and
merged later.

7In earlier versions of SDTM, the controlled terminology was coupled to the SDTM version. This is no longer the case,
and one can select any more recent version of the controlled terminology. It is usually advised to use the latest
published controlled terminology, and then to stick to that version during the generation of the SDTM and the
define.xml.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 16

After clicking "OK", the system will start loading the templates and the controlled terminology, and
will ask for additional information:

A proposal is made for the "MetaDataVersion OID" and the "MetaDataVersion Name". These are
arbitrary - they are currently not really used as only one "MetaDataVersion" is currently allowed in
a define.xml8.

For the "MetaDataVersion Description", we provide useful information, e.g.:

8This might change in future when the regulatory authorities allow to have updates on define.xml content.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 17

After clicking OK, the templates and CDISC controlled terminology are loaded. The following
message appears:

Remark that the whole CDISC controlled terminology has been loaded, and that you will need to
subset many of the codelists. For example, the "LBTESTCD" contains over different 1,500 codes
for lab tests, but you will probably have considerably less in your study. We will later learn how to
subset a codelist.

Also, you will later have to develop the necessary "value-lists" (value-level metadata). The software
has a wizard for this, allowing you to generate a "ValueList" from an existing codelist.

After clicking OK, and navigating to the "Variable Definitions", one gets:

One sees that the table has been filled with information, and that for each variable, a datatype and a
maximum length has been proposed. You will still have to adapt this information for your own
study. For example, for RFSTDTC and similar variables (RFENDTC, RFXSTDTC, ...) you only
have collected the date without a time part, you should change the datatype "datetime" into "date".

http://www.lexjansen.com/pharmasug/2014/DS/PharmaSUG-2014-DS13.pdf
http://www.lexjansen.com/pharmasug/2014/DS/PharmaSUG-2014-DS13.pdf

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 18

This can easily be achieved by clicking in the cell, and select "date" instead of "datetime". For
example:

You will also need to adapt the value for "Length" to the maximum length the data can have for that
variable in your SAS-XPT files. So if in your study "USUBJID" never has more than 20 characters,
you should change the value of "60" into "20", and take care that in your SAS-XPT file the field
length is exactly 209. If you start developing your define.xml before the study is being finalized
(which is a best practice), and do not know all the maximal lengths, no worry, you can still leave the
"Length" with the proposed value, and do an automated adaption from the SAS-XPT file contents
when you have all your SAS-XPT files available (see further on).
Remark that the "Length" attribute is only there due to the regulatory requirement to submit using
SAS Transport, and does not have a meaning when using a modern transport format.

One also sees that all rows in the table have the "+" icon colored yellow, meaning that additional
information is available. For example, when clicking on the "+" icon, the following dialog is
displayed:

showing that the "label" has already been added, i.e. loaded from the template.

For values that are coded, e.g. for LBTESTCD, clicking the "+" icon and navigating to the
"CodeList Reference" tab leads to:

9This has to do with the fixed field and record length in SAS-XPT. Once the regulatory will start accepting Dataset-
XML or Dataset-JSON files instead of outdated SAS-XPT, the requirement to provide a "Length" will probably be
dropped.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 19

The left side shows the pre-defined codelist (OID identifier) from the loaded template, the right side
shows a list of all available codelists (including external ones like MedDRA), that can be used for
drag-and-drop. Later, when having developed a subset codelist (for our study) with LBTESTCD
codes, we will replace the reference to a new one for our subset codelist.
With the search button that appears under the list, it is very easy to find a specific codelist by a
word in its name.
Each of the choices also has a tooltip showing the full name of the codelist, e.g.:

We will later also learn how to add information for "Origin" (required either on variable or value-
level for each variable in the context of a regulatory submission), and other important information.

In the main window, we can easily search for a specific variable by clicking the "Show Search
Panel" at the bottom of the screen:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 20

leading to the appearance of a "Search" panel near the top of the screen:

allowing e.g. to find "LBTESTCD" in the list of variables:

and clicking the "Search" button will then select the entry for LBTESTCD:

clicking the "magnifying glass" icon on LBTESTCD leads to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 21

Now going back to the main window, and selecting the "Dataset Definitions", we find:

with one row per domain.
Clicking on the "+" icon e.g. For "DM" opens a new window with:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 22

I.e. the domain label is already present ("Demographics"). Selecting the "Variable References" leads
to:

showing which variables belong to "Demographics" with a list of available variables on the right
side. For other domains than DM, this will allow us later to e.g. add additional timing variables to
any "Findings", "Event" or "Interventions" domain/dataset.

One also sees that the "Mandatory" field has been filled. Its value is "Yes" for the case that the
SDTM variable is "required", and to "No" when the SDTM variable is "expected" or
"permissible"10.

Remark that "KeySequence" is not populated, as the assignment of the table keys is a user
decision. This is important to realize: it is up to you to decide how your SDTM/SEND/ADaM table
will be organized and which combination of variables will guarantee uniqueness of the records.
In the case of DM, the typical assignments for KeySequence is "1" for "STUDYID" and "2" for
"USUBJID".

Going back to the main window and clicking the "magnifying glass" on e.g. "DM", the following
window is displayed:

10Essentially, the designation "Expected" is an horror. A better designation would have been "conditionally required".

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 23

and when scrolling to the bottom:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 24

Also let us have a look at the list of controlled terminology, by clicking the "CodeLists" tab:

For each loaded codelist, it displays the identifier (the OID), the name of the codelist, and the
datatype (usually "text)". Clicking the "+" icon e.g. for "CL.C74456.LOC" ("Anatomical Location")
and then selecting the "CodeListItem" tab leads to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 25

One also sees that there is still underlying information for each of the coded values, as the "+" icon
is colored yellow. Clicking on the "+" icon for e.g. "ABDOMINAL AORTA" leads to:

also providing the NCI code.

Unfortunately, CDISC publishes most of its Controlled Terminology as "EnumeratedItem"
codelists, so without "Decode" and "TranslatedText" possibilities, ignoring that there are other
languages than English in the world.

One can however transform an "EnumeratedItem" CodeList into a "CodeListItem" codelist (the
latter allowing other languages) by using the menu "Transform - EnumeratedItem CodeList to
CodeListItem CodeList"):

The system will then ask to select and codelist which is then transformed. The new OID is then the
OID of the selected CodeList plus the suffix ".NEW".
For our "Body Location" CodeList CL.C74456.LOC, we then get a new CodeList with OID

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 26

CL.C74556.LOC.NEW (one can of course later change the OID), which also has "Decodes".
Editing it by clicking the "+" then allows us to e.g. add a Japanese term:

Before going into detail about other features, we will first look how to create a define.xml file from
an existing set of SAS-XPT files.

Creating a define.xml starting from an existing set of SAS-XPT filesCreating a define.xml starting from an existing set of SAS-XPT filesCreating a define.xml starting from an existing set of SAS-XPT files

In some cases, sponsors need to generate the define.xml "post SDTM", "post SEND" or "post
ADaM". Although this is not a best practice, it is an existing one, and the "Define.xml Designer"
has a lot of features and wizards to bring this to a good end, this in contradiction to "black box"
software that starts from an Excel worksheet and usually leads to disaster, as the users do not
understand what they are doing.

After using the "File - New Define.xml", select the checkbox "I want to start from a set of SAS-
XPT files":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 27

Then select the model, which can either be "SDTM" or "SEND" or "ADaM" or "Other". We will
here demonstrate the functionality for the case of an SDTM define.xml.

It is also very wise to then select a CDISC-CT version. This will allow the system to compare the
distinct values of coded items in your SAS-XPT files with the CDISC codelists, and set up CDISC-
compliant subset codelists.

When clicking the "Browse SAS-XPT" button, a dialog appears:

This allows you to select all SAS-XPT files from a single directory, or a selected set of SAS-XPT
files. When using the first option, you will only be able to select a directory, when using the second
option, you will need to select one or more SAS-XPT files from a directory.
For example for the first option:

And after clicking "Open":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 28

Explaining that the challenge of such an approach is that the SAS-XPT datasets only contain a
minimum amount of metadata, and that you will need to get metadata from several sources,
especially from the CRFs (in the case of SDTM) and from the source operational database.

After clicking OK:

The system starts analyzing the SAS-XPT files11 to generate a first primitive prototype of the
define.xml. After that, it is a very good idea to select a version of the CDISC controlled
terminology, and to add the general information that goes into the define.xml:

11 At this stage, it only analyzes the "header" part of the SAS-XPT files, so not the complete contents. Therefore, it is
fast, but the generated metadata is not very precise.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 29

Below this part of the wizard, one will find some more checkboxes12:

We will explain them here in detail, although there is a tooltip for each of them:

The first one "Generate Define-XML Variable Data Type", "Length and SignificantDigits from
XPT content", will, when checked, tell the software to generate more granular data types for the
variable definitions, and adapt the values for "Length" and "SignificanDigits" (in case the data type
is "float").
When this checkbox is not checked, the software will only inspect the header of the XPT files, and
assign the datatype as "text" when the information in the header states that the variable is of type
"char", and assign the datatype as "integer" when the information in the header states that the
variable is of type "num" (numeric). It will also assign the lengths as indicated in the header (as 8
for numeric variables). So if the header says that the variable length for VSBLFL (baseline flag) is

12 This is a new feature of the Define-XML Designer version 2022.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 30

200, then 200 will be assigned13, even when the only value in that column is "Y".
However, only reading the header is very fast.
When the checkbox is checked, a thorough analysis of the contents is performed, and the longest
string value for variable values determined, and set to the "Length" of the variable in the
define.xml. So, even when the header states "200" for the length of e.g. VSBLFL, but the only
value found is "Y", then the Length in the define.xml will be set to "1".
For numeric variables, it will be checked whether the value is a float or an integer, and the "Length"
and "SignificantDigits" (the latter in the case of "float") as defined in the Define-XML
specification, will be determined.

Analyzing the full contents of the SAS-XPT files is however computing intensive, especially for
large XPT files. So this process can take a few minutes.

The second checkbox "Try to create subset CodeLists from XPT content and selected
Controlled Terminology" does exactly what it says. For each variable to which there is controlled
terminology according to the Implementation Guide (IG), the system will retrieve the distinct
values from that column from the XPT file, and create a codelist for the variable. This codelist is
then compared with the CDISC one, and additional information, like the NCI code is added. If a
distinct value is not found in the CDISC codelist, it is marked as an extension to the codelist, using
the def:ExtendedValue="Yes" attribute.
In case of Define-XML 2.1, also the attribute def:StandardOID is added. This will be explained
further on.
The newly generated codelist is then assigned to the corresponding variable definition (ItemDef).
On one hand, this feature is very useful, allowing to obtain relative small codelists that reflect what
has been captured, but at the other hand, it can be pretty tricky when does not think about the
implications of this approach:
Imagine for example, that on the CRF, you had "Mild", "Moderate" and "Severe" for the Adverse
Event Severity, but there was never a severe AE, so you XPT dataset will not have a value
"SEVERE" for "AESEV". In that case, the generated codelist will only contain "MILD" and
"MODERATE". The submission codelist must however reflect what was planned, in this case
reflect the CRF, so also "SEVERE" must then be added to the codelist. As the system cannot know
what exactly was planned, checking the generated codelist for completeness (and correctness) is the
task of the user.

Also new is the checkbox "Try to create sponsor-defined CodeLists from definitions in a
'sponsorcodelistvariables.dat' file".
This file needs to reside in the folder where also the software is located.
Here is an example of the contents of the file:

13 The fixed-length format for variables is one of the major problems of the XPT format. It also means that if the string
length is less than what is provided in the header, the remaining of the field for that variable is filled with blanks. This is
why SAS Transport is such an inefficient format. Reason is that it is one step beyond the punch card ...

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 31

It states that it wants the software to generate sponsor-defined codelists for all --CAT variables,
independent of the domain, and furthermore sponsor-defined codelists for ARMCD, ARM, ETCD,
ELEMENT, and EXTRT.

Remark that lines starting with a "#" are comment lines, which will be skipped by the software.

When this checkbox is checked, the result for e.g. ARMCD and ARM (in DM) will e.g. be:

One sees that for Define-XML 2.1, the "def:IsNonStandard" is set to "Yes", as it is a sponsor-
defined codelist and not a CDISC codelist.

The fourth checkbox "Try to create ValueLists for Supplemental Qualifier datasets from XPT
content", will inspect the SUPPxx datasets, and analyze the QNAM and QVAL values.
For each distinct QNAM/QLABEL, it will retrieve the distinct values of QVAL, and assign a data
type to the latter. For example for QNAM=FSYMPDAT with QLABEL="Date of first symptoms",
it will only find dates for QVAL, and then assign the datatype "date" and use that for generating the

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 32

ValueList. When the assigned datatype is "text", it will generate a codelist with the distinct values
of QVAL, and use that in the valuelist.
For example, for the file SUPPDM, this will lead to:

and for example for the properties of "ITT":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 33

with its assigned codelist:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 34

The last checkbox "Try to create ValueLists from definitions in a 'valuelistvariables.dat' file"
allows to have ValueLists created (at least, the system will try ...) from definitions, which need to be
provided in the file "valuelistvariables.dat" in the folder where also the software resides:

The software comes with such a file, which one can edit, or even make different versions for
different use cases, but when this feature is used, the definitions will be taken from the
"valuelistvariables.dat" file.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 35

Let us look at some example contents:

Lines that start with a "#" are regarded as comments and will be skipped. This can very well be
used for switching off some definitions.
The format is very similar to what one sees in the browser when displaying a define.xml in the
section of "Value Level Metadata". It starts with the variable for which a valuelist will needed to be
generated, the keyword "WHERE" followed by the selection condition.
For example, the first line states that a valuelist should be generated for VSORRESU with the
condition that the value of VSTESTCD is "WEIGHT".
The second line states that a valuelist should be generated for VSORRESU with the condition that
the value for VSTESTCD is either "SYSBP" or "DIABP".
The third line has been commented out, so will be skipped. This was done as the statement does not
make much sense: it would generate a valuelist for VSPOS when the value of VSTESTCD is not
one of SYSBP or DIABP. As VSPOS is usually only used for blood pressures, this would generate
an empty codelist in the valuelist, which is not very useful.
The fourth line shows a classic use of valuelists, generating a valuelist for VSPOS for the case that
VSTESTCD is either SYSBP or DIABP.

In the expressions, the following comparators are supported:
EQ - meaning "equals"
NE - meaning "does not equal"
IN - meaning "is in the list of" - this requires that it is followed by a list of values, with the
values separated by a comma
NOTIN - meaning "is not in the list of "- this requires that it is followed by a list of values,
with the values separated by a comma

Remark that the other Define-XML comparators "LT", "LE", "GT" and "GE" are not (yet)
supported.

When applied, this will e.g. result in a valuelist with 2 "use cases" for VSORRESU:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 36

with the properties e.g. for the case of VSORRESU for "weight":

and with the associated codelist:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 37

and as depicted in the browser by the stylesheet:

Also here, it is up to the user to carefully control the generated metadata. For example, if the CRF
also had the unit choice "stones" for "weight", but it was never used, and thus is not present in the
XPT file, it still must be added.

Remark that generating valuelists from XPT file contents is computing intensive, as each applicable
XPT file must be analyzed. So, when one of the above features is used, you may want to go for a
cup of tea or coffee.

After clicking OK in the "New Study MetaData" wizard, a proposal is made for the
"MetaDataVersion OID", "Name" and Description":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 38

After clicking "OK", you may say some progress bars showing up, informing you about the
progress made for each of the options selected. You may want to go for a cup of tea of coffee ...

When ready, this leads to a first proposal for the variable definitions:

When the checkbox "Generate Define-XML Variable Type, Lengths and SignificantDigits from
XPT contents" was not checked (the "fast way"), one sees that a first estimate of the datatype has
been made for each variable, and that the maximum length has been taken from the field definitions
within the header of the SAS-XPT files. Also the "label" has been taken from the SAS-XPT file, for
example for "RFPENDTC":

Remark that no "language" needs to be defined, as the English language is considered as the default
language by the Define-XML standard.

For the dataset definitions, we find:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 39

And when "drilling down" into the details using the "+" icon, e.g. for "VS":

One sees that a good amount of information already has been added, based on both the SAS-XPT
files and the knowledge about the SDTM or SEND standard that the system has. Furthermore,
everything is transparent, and it is completely clear what the system has generated and what not,
this is contradiction to "black box" tools that usually start from Excel worksheets, and that do not
allow to inspect what one has been generated.

In case the checkbox "Generate Define-XML Variable Type, Lengths and SignificantDigits
from XPT contents" was checked, a full analysis of the contents of each XPT dataset was
performed (the "slow" way), and the metadata information is more granular and more precise, for
example for LB variables:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 40

One sees that for LBBFL (baseline flag) the "Length" has been set to "1", as the only value
occurring in the dataset is "Y", even when the SAS-XPT header e.g. defines "8" for the length for
that variable.
One also sees that for LBSTRESN, LBSTNRLO and LBSTNRHI, the system found out that the
values are of type "float" (that information is not in the XPT header) with "Length" being "4" and
"SignificantDigits". And indeed when looking into the XPT file, a typical value for LBSTRESN is
"126.4".

Remark that one can also generate more exact and precise values for the "DataType", "Length" and
"SignificantDigits" later, using the menu "Extra - Adapt Variable Length from SAS-XPT file
contents". This is especially useful for "fine-graining" the define.xml once one has all XPT files as
final.

Going back to the panel with the generated variables, one can use the "Show Search Panel" (near
the bottom) to look for specific variables:

Clicking the "Show Search Panel" leads to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 41

allowing to search in the table with variables. Using the checkboxes one can limit the search to
certain fields/columns.

As the amount of metadata in the XPT files is very limited, it is of utmost importance that one
carefully inspects what has been generated in the define.xml, and extend, correct and adapt this to
reflect as well the collected data as the study design.

For example, the system can not retrieve the exact structure (how it was organized) for each of the
XPT datasets14.

Therefore, we must add additional information at the "Dataset Definition" level:

We see that for each SAS-XPT dataset, a row has been created, and a lot of information has been
added, but some is still missing:

In order to find out what, click the "Validate" button in the buttons panel near the bottom:

The software does a quick "local" validation and soon reports:

14 This may maybe be possible in a future version of the software.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 42

and in the table with the datasets itself, some cells are colored:

stating that "Structure" is a required attribute. A quick look in the Define-XML specification learns
us that this field contains free text like "one record per vital sign per vital signs measurement per
subject". This is of course information that cannot be retrieved from the SAS-XPT file and that
needs to be added manually. If the "structure" is not clear from the organization of the SAS-XPT
file, you will need to ask the person who generated the file, or look into the documentation of or the
code that generated the SAS-XPT dataset. In most cases however, the "structure" can be deduced
from the organization of the dataset itself. Remark that this is important information for the
reviewer (and that is also why it is a required attribute).
Also remark that the "structure" can deviate considerably from the structure that is proposed in the
SDTMIG or SENDIG. So do NOT copy the "structure" from the SDTM-IG or SEND-IG just like
that: think yourself!

After having added the "structure" for each dataset, let us "drill down" into the details by clicking
the "+" icon. For example for the "Variable References":

Clicking the "Validate" button near the bottom again leads to the message:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 43

saying us that (in case the define.xml will be used in a regulatory submission), one must assign keys
(and their sequence) to the variables. Examples about how this needs to be done are given in the
Define-XML specification. An example for "Vital Signs" is:

Do not copy this example without knowing what you are doing! This is an example only! You will
need to look into the organization of your clinical database or into the code that generated the
dataset in order to find out which were the key variables, and in which order the keys apply.

In case we accidentally assign the same key number twice, and validate again, the validation
message becomes:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 44

Ordering the dataset definitions

Especially when generating the define.xml starting from SAS-XPT files, the dataset names in the
tab "Dataset Definitions" will probably not be in the order FDA reviewers want it to be15.
For SDTM and SEND, the by the "CDISC Metadata Submission Guide" and FDA required order is
per class (as in the "def:Class" attribute in the define.xml) and within the class, alphabetically. For
ADaM, the suggested order is "Subject Level Analysis Datasets", followed by "Adverse Events
Analysis Datasets", followed by "Basic Data Structure" and then "ADaM Other".

The dataset definitions can be ordered manually, using the buttons "Move Row Up" and "Move
Row Down", but much more easy is to have it done by the program based on the above rules, using
the menu "Extra – Order Dataset definitions alphabetically per class":

The ordering is done by the program. An example of "before" and "after" is given below:

15 Essentially, this is a bit ridiculous, as this is only for "ease of review" in the browser, which could easily be managed
by a standardized FDA stylesheet. However, the FDA is not capable of developing stylesheets. For machine-readability,
the order of the dataset definitions is completely irrelevant.

https://www.cdisc.org/standards/foundational/sdtm/sdtm-metadata-submission-guidelines-v2-0

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 45

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 46

Adding and subsetting CDISC Controlled Terminology

For most "Findings" domains, you will want to use CDISC controlled terminology. When starting a
new define.xml you will be able to load all the CDISC controlled terminology that is needed. When
new CDISC controlled terminology is published, you can simply copy the new XML file16 to the
directory, and it will be automatically available.

However, you will very often need to subset the codelists that were provided by CDISC and adapt
them for your own study. If you generate the define.xml before you generate your datasets
(currently in SAS-XPT format), which is the best practice, you can subset loaded codelists using the
menu "Extra - Generate CodeList Subset". If you create your define.xml after you created the SAS-
XPT files (not such good practice, but usually the only way in case of legacy datasets), you can
compare your SAS datasets with the published controlled terminology and generate a subset of an
existing codelist using information from both. The latter is explained in detail in the section
"Adding and Subsetting CodeLists from SAS-XPT files".

In case you create your define.xml before generating the SDTM/SEND/ADaM datasets, you will
probably subset your codelists with information from the protocol, or from the CRFs.

In the example below, we will subset the codelists for VSTESTCD (Vital Signs Test Code) and
VSTEST (Vital Signs Test Name).

If you have not loaded any controlled terminology yet, you can now do so using the menu "Add -
CDISC Controlled Terminology":

This menu can also be used to replace the controlled terminology by a newer version, or to add one
or more (e.g. new) codelists.

All CDISC controlled terminology is then presented as a list:

16 A download page for new published CDISC Controlled Terminology is made available by XML4Pharma

http://cdisc-end-to-end.blogspot.com/2015/03/creating-definexml-best-and-worst.html

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 47

We choose e.g. the SDTM controlled terminology version 2022-06-24.

If controlled terminology (e.g. an older version) was already loaded before, the system will ask:

And when "Add selected CodeLists" is selected, it will ask to select one or more, e.g.:

Once again, one can use the "Search" button for finding a specific codelist.

When one has then selected "all codelists" or "selected codelists", and one already has codelists
loaded, e.g. an older version, the system will ask whether these earlier codelists may be overwritten
when there is one with the same OID in the selected set:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 48

If one clicks "No", there is of course the risk of duplicates ...
So one will usually use "Yes", leading to:

This may sometimes lead to surprises, as some codelists have been deleted or deprecated by CDISC
in the course of time, but in the case of Define-XML, this will be clearly visible by the value in the
"StandardOID" column. For example:

where one sees that for 17 codelists from the 2018-03-30 version, there is no newer 2022-06-24
version.

One can now of course already remove codelists that are not needed, but one can also do this later
in an automated way using the menu "Edit - Clean" (see later).

Once loaded, each of the loaded codelists can be subsetted by using the menu "Extra - Generate
CodeList Subset":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 49

A new dialog is displayed, allowing you to select for which codelist you want to generate a subset:

Searching for the right codelist is made ease by the "Search" field and buttons. One can search on
the codelist OID (CDISC identifier) or the codelist name. So for "vital signs test code" one easily
finds:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 50

Clicking "OK" leads to a new dialog:

from which the codes to appear in the subset can be selected.
Unfortunately, the CDISC Controlled Terminology Team still publishes codelist with test codes
without any information about what the code means, i.e. without "decodes". The latter can only be
found by taking the NCI code of the code, and then do a lookup in another codelist with the
decodes). The software will always try to do this, so for the "VSTESTCD" codelist, although it may
not contain the "decodes" like "Abdominal Skinfold Thickness", the software will pick them up
from the "VSTEST" codelist, and display them.
Also, the SDTM and SEND standards requires us to both deliver the test code (--TESTCD) and the
test name (--TEST) as two variables (two columns in the dataset), whereas this is completely
unnecessary when using modern technologies, as there is a 1:1 relation between test code and test

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 51

name (for more information, see here). So when creating subsets, we will both need to create a
subset for --TESTCD as well as for --TEST.
For ease of use, the checkbox "Also automatically subset …", takes the "decodes" (the "test
names") and merges them as "decode" in the subset VSTESTCD codelist.
This then also automatically will create the corresponding subset codelist for VSTEST17.

Suppose that we want to create a vital signs test code subset consisting of "DIABP" (diastolic blood
pressure"), "SYSBP" (systolic blood pressure", "HEIGHT" (body height), "WEIGHT" (body
weight), "BMI" (body mass index) and "HIPCIR" (hip circumference). We tick the boxes for those
codes that we want to appear in the subset:

and then click the OK button. The software now proposes a new OID (identifier) and name for the
subset codelist:

17 This also works for CDISC codelists that end with "Test Code" in the name, like the codelist with OID
"CL.C141657.TENMW1TC" with Name "10-Meter Walk/Run Functional Test Test Code". If this codelist is taken, and
the checkbox "Also automatically subset the corresponding 'decode' CodeList ..." is checked, also the corresponding
subset codelist "10-Meter Walk/Run Functional Test Test Name" (subset codelist of codelist with OID
"CL.C141656.TENMW1TN") will be generated.

http://cdiscguru.blogspot.com/2014/07/why-sdtm-should-not-contain-test-as.html

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 52

We can of course change these, for example:

If also the checkbox "Also automatically subset the corresponding 'decode' CodeList" is checked,
also a subset codelist "CL.C67153.VSTEST.SUBSET" will be created.

After clicking "OK", a message is shown:

and the new codelist(s) appears in the list of all codelists:

One can then of course still change the subset codelist, change the value for OID or Name, add new
terms. For example, if one wants to extend this subset vital signs codelist with the term "Upper
Tight Circumference", with a code "UPTICIR", just click the "add information" icon ("+"), leading
to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 53

and add "UPTICIR" in a new row. As this is an extension to the CDISC codelist, you should also
set the value of "ExtendedValue" to "Yes":

Do however NOT assign an NCI code to such a new entry that is not a CDISC term.

In case the codelist is an "CodeListItem" codelist, one should also add the "decode" by clicking the
"+" icon and adding the information:

After clicking "OK", the subset codelist is extended and updated.

You might also now do similar for the subset codelist for VSTEST, adding "Upper Tight
Circumference" as an extension.

Let us now have a quick look to the generated XML in the define.xml. This is never a bad idea if
one wants to understand what one has done.
In order to do so, use the menu "View - Define.xml as XML":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 54

and select the last "CodeList" in the list of tree nodes:

The XML is then shown on the right side:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 55

Where we see that there is an NCI code (using the "Alias" element) for each "standard" vital signs
test code, whereas the extension code "UPTICIR" does not have an NCI code, but has the
def:ExtendedValue="Yes" attribute. We also see that the codelist as a whole has an NCI code
(C66741) from the last "Alias" element.
This is also a requirement from the CDISC standards, i.e. that when one subsets a codelist from an
existing CDISC codelist, one must keep the NCI code of the codelist itself.

Or when inspected in the browser using the stylesheet (menu "View - define.xml in browser):

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 56

which will result that the "view" on the define.xml will be opened in your standard (favorite)
brower:

The only thing we still need to do is to assign our new subset codelist to the VSTESTCD variable.
This can easily be done by selecting the "Variable Definitions" tab, selecting the VSTESTCD
variable:

and then click the "Add Information" icon ("+") to add additional information. When the selecting
the "CodeList Reference" tab:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 57

Remark that one can easily find a specific codelist by using the "Search" button.
Now just drag-and-drop "CL.C66741.VSTESTCD.MyStudy" to the empty cell on the right:

After clicking "OK", the subset codelist "CL.C66741.VSTESTCD.MyStudy" is assigned to
VSTESTCD.
We can inspect this using the "browser view" using the menu "View - define.xml in browser",

With a "stylesheet selection" dialog showing up:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 58

You can choose between the "standard" CDISC stylesheet (the one that comes with the CDISC
Define-XML standard package), and your own or any other one. In the latter case, the "Browse"
button will become available, so that you can select your own preferred stylesheet, which will then
be applied.

When the "CDISC stylesheet" is selected, this is leading to:

and when clicking on "Vital Signs Test Code for my study":

with for each "Standard" code, the NCI code displayed and for the "UPTICIR" code, it being
marked as a "extended" value.

In case we checked the checkbox "Also automatically subset the corresponding 'decode' CodeList
..." also the corresponding subset codelist with VSTEST terms has been created, and the only thing

https://www.cdisc.org/standards/data-exchange/define-xml
https://www.cdisc.org/standards/data-exchange/define-xml

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 59

we then still need to do is to assign it to the VSTEST variable.
If we did not check the checkbox, no subset codelist with VSTEST terms has been created, but we
can then do this separately, again using the menu "Extra - Generate CodeList Subset".

Adding and subsetting codelists from SAS-XPT files

When generating a "prototype" from a set of SAS-XPT files, one has the option to have the system
generate subset codelists from the information in the XPT files (see section "Creating a define.xml
starting from an existing set of SAS-XPT files"). One should however not need to wait until all
XPT files to start generating a define.xml file!
Also, when generating the define.xml starting from a template for a specific SDTM, SEND or
ADaM version (see section "Creating a define.xml starting from an SDTM/SEND/ADaM
template"), which is the better practice, it will not always be possible to generate all the subset
codelists until the XPT files are final. Of course, one can often already use the information from the
CRFs to generate such subset codelists, but also this is not always possible.

In case one wants to create a subset codelists from the contents of one or more XPT files in a later
stage, one can always do so using the menu "Extra - Generate CodeList Subset starting from SAS-
XPT":

The following dialog is presented:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 60

Now select a codelist you wish to subset. If one does not know the exact name, one can use the
"Search" panel, for example for "vital signs test code":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 61

In our example, we will generate a subset for the VSTESTCD codelist based on the contents of our
vs.xpt dataset:

We select the item: CL.C66741.VSTESTCD - Vital Signs Test Code

Then select the SAS-XPT file you want to get the values from, using the "Browse" button.
Obviously this is the vs.xpt file in this case.

When an XPT file is selected, a dropdown to select the variable of interest will be displayed from
which one can choose:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 62

Once the file selected, the system analyzes its metadata (this takes a few seconds), and makes a
proposal for the variable for which the unique values from the SAS-XPT file will be retrieved:

This choice can then still be changed using the dropbox.

When clicking "OK", the system takes all the VSTESTCD values from the SAS-XPT "vs.xpt" file
and takes all the unique ones. It then tries to match them to the values from the codelist
CL.C66741.VSTESTCD "Vital Signs Test Code". This leads to a new dialog:

The first column contains a checkbox, allowing the user to decide whether the coded term should be
included in the subset.
The second column contains the term as found in the SAS-XPT file and the third column the coded
term (and the decode when present) in the codelist. So if the term is present in as well the second as
third column, there is a match between the SAS-XPT value and the already available codelist. In
such a case, it is recommended to add the coded term to the subset codelist (so the checkbox is
already checked).
When scrolling down:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 63

If one would find a value in the second column without a counterpart in the third column, this
would mean that the value is NOT in the codelist, BUT it is in the SAS-XPT file. If the checkbox is
then checked to indicate that it should be added to the subset codelist, it will then appear there as an
"extended value" with an attribute 'def:ExtendedValue="Yes"'.
Obviously, our dataset did not contain a value in the SAS-XPT file that was not in the codelist yet.

Suppose however that there was a field in the CRF for "BMI", but that there are no data for it (yet)
in the SAS-XPT dataset. In such a case "BMI" must be added to the codelist, as it was on the CRF.
So we do check the checkbox for "BMI":

Clicking "OK" will then create a subset of the codelist. It automatically assigns the OID
"CL.C66741.VSTESTCD.SUBSET". You will of course later be able to change the OID. The
original codelist name is however retained.

The system then asks whether it should assign the newly generated subsetted codelist to the variable
"VSTESTCD":

I some cases, a list if variables can appear here, and you can choose to which ones you want to have
the newly generated codelist assigned.

This results in:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 64

and when clicking "OK" again, the table with all the codelists will be displayed, containing a new
row for the subset codelist:

One can now still edit this codelist, add terms, remove terms, change the name, etc..

Clicking the "magnifying glass" icon gives an overview:

also containing "BMI":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 65

Remark that also the "Alias" child elements, containing the NCI code, were copied from the
original codelist.

Suppose now that we also subsetted the "LBTESTCD" codelist, and that the SAS-XPT file contains
an LBTESTCD value "ALBB". It might be that this is a mapping error: in that case one would need
to re-generate the lb.xpt file.
If, however, it was not an error, but "ALBB" corresponds to "Aluminumbibutyrate Measurement",
one would find the following list of coded items in the codelist:

Remark that it is automatically marked as "extended".
One would still need to add the "decoded value". This can be done using the "+" icon, and adding
the text to the "Decode" element:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 66

Clicking the magnifying glass icon in the main table then displays:

Remark the "ExtendedValue" with value "Yes" in the table of attributes, and that there is no "Alias"
element with "nci:ExtCodeID", as this term is not in the CDISC controlled terminology.
You can of course always do a "new term request" to the CDISC "controlled terminology team", but
this may take a few months until it is approved.
When it is, you can then add the NCI code, and remove the "extended" marker.

Important here is that the user is always in control, and not the system, as in some other "black
box" tools starting from Excel worksheets.

Looks good isn't it?

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 67

Transforming an "EnumeratedItem" CodeList into a "CodeListItem"
CodeList

Many of the CDISC controlled terminology is published as an "Enumerated" CodeList, i.e. all
values are published without description and without any translations into other languages. For
example:

Usually, the "coded value" is written uppercase, which is not very useful for populating a CRF.
Also, in the case of electronic submissions to regulatory authorities in non-English speaking
countries (Japan, China), sponsors will usually submit the English term as well as the term in the
local language.

So we will want to transform such an "Enumerated" CodeList into a classic CodeList with a
"Decode" and "TranslatedText" elements, like in:

Our system has a feature to do such a transformation automatically. The result will initially always
have the value for Decode/TranslatedText being the same value as for "CodedValue", but the user
will then be able to change this and add translations for additional languages.

In order to do so, use the menu "Extra - Generate CodeListItem-CodeList from EnumeratedItem-
CodeList". This will then present the use with a list of all available codelists that have at least one
"EnumeratedItem" child element:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 68

Then select the codelist for which you want to create Decode/TranslatedText elements, allowing
you to change the way this appears on a CRF and/or you want to add translations. For example:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 69

Checking "Set English as default language" will make it clearer later which language is meant when
adding translations for other languages.
When checking "Try to generate CRF-friendly decoded texts" the system will try to generate camel-
case "decoded" texts, which e.g. can be used in CRFs18.

After clicking the "OK" button, the following message is displayed:

and the codelist is added at the bottom to the table with the codelists.
If you do not want the old codelist anymore, but only want to work with the new one, you can
delete the old one and rename the new one.

The table is displayed automatically:

18 One of the use cases of define.xml is to develop CRFs that are obeying the SDTM requirements of the sponsor.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 70

When clicking the "+" icon, one sees that the child elements are "CodeListItem" elements now
instead of "EnumeratedItem" items:

and one can start adding translations into other languages. For example, for
"BACTERIOLOGICAL CURE", we find for the "decode":

which is "camel case".
and e.g. add the Japanese translation, leading to:

The "CodedValue" (asto be used in a database) however remains "BACTERIOLOGICAL CURE".

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 71

Displaying your define.xml as HTML in a browser using a stylesheet

Many people (unfortunately) know define.xml only from what they see in the browser. What is seen
in the browser is however only a particular view on the information in the define.xml provided by a
stylesheet19. When submitting the define.xml to the FDA or the PMDA, it is the sponsors duty20 to
also provide a stylesheet so that the reviewers can see the information in a user-friendly way.

Most sponsors use the stylesheet that is provided by CDISC. Sponsors are however also free to
develop their own stylesheet (or alter the one from CDISC). This however requires a good amount
of XSLT knowledge.

Also from within our software, one can already obtain a view of the developed define.xml in the
browser by applying the stylesheet. To do so, use the menu "View - define.xml in browser":

You will then be asked whether you want to use the default CDISC stylesheet, or your own or other
favorite one:

If you select "Use own stylesheet", you will need the "Browse" button to select a stylesheet file
from your local file system.
Then click OK, and the define.xml will be displayed (as HTML of course) in your default21

(favorite) browser. For example:

19 Technically, stylesheets can even be used to manipulate the contents of the XML!
20The FDA would better forbid that the stylesheet is provided by the sponsor, and use their own one. This would ensure

that all studies are displayed in the same, sponsor-independent way.
21The system recognizes what your default browser is.

https://www.cdisc.org/standards/data-exchange/define-xml
https://www.cdisc.org/standards/data-exchange/define-xml

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 72

Creating and populating Sponsor-defined Codelists

You probably also want to generate some sponsor-defined codelists.
Sponsor-defined codelists in Define-XML are not different from CDISC codelists except that they
do not have a CDISC-NCI code (as provided in an "Alias" element).

In order to generate a new codelist, either navigate to the "CodeLists" panel and click the button
"Add Row", or use the menu "Add - CodeList Definition". This will add a new, empty row at the
bottom of the CodeList panel:

Now assign an OID (identifier), and Name for the codelist, e.g.:

and select the value for the data type (usually "text") from the dropdown:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 73

You can now adding some terms to your codelist by clicking on the "+" icon. This opens a new
dialog:

On the tab "Description", you can now add a description of the codelists, even in different
languages. You will now also need to decide whether you just want to add a list of the codes
without explanation ("enumerated items") or a list of terms with explanations ("codelist items" with
"decodes"). In most cases you will want to add explanations to the coded values. In that case, select
the tab "CodeListItem". This leads to:

Remark that the selected tab is always displayed in yellow.

You can now add codes, in our case for "ARMCD" (trial arm code). Let us already add a few ones:

But what do "WONDER10" and "WONDER20" mean? Best practice is to provide an explanation
by using the "decode" of Define-XML.
For doing so, click on the "+" icon, e.g. for the row with "WONDER10". This opens a new dialog:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 74

Now add the explanation in the field "TranslatedText", e.g.:

You can do so in different languages, but then also need to provide the language. For example:

Then do also for "PLACEBO" and "WONDER20".

You will usually not need to populate "Rank", unless you want to add an order for importance, like
in "mild - moderate - severe". Also remind that "OrderNumber" is only about the order of display,
which is something completely. If you just want to have the display order the same as how you
added the items, there is no need to populate "OrderNumber". In the case of a sponsor-defined
codelist, also leave "ExtendedValue" untouched, as you do not extend a CDISC codelist here.

When inspecting the complete codelist (by clicling the "magnifying glass" icon), this may then look
like:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 75

In the case of Define-XML 2.1, you will still want to state that this is a "non-standard" (i.e. non-
CDISC codelist), which you can do by using the dropdown for "IsNonStandard":

Remark that in Define-XML 2.1 "StandardOID" and "IsNonStandard" are "mutually exclusive", i.e.
it is not allowed to have both set.

Suppose now that you have already created your SAS-XPT files, and want to have the sponsor-
defined codelist populated with the values from a SAS-XPT file.

In order to do so, create the sponsor-defined codelist, but do now add any terms to it. For example:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 76

One sees that the "+" icon is not colored, meaning that there is no underlying information.
If you e.g. want to populate the codelist from the values for ARMCD in your SAS-XPT file
"dm.xpt", use the menu "Extra - Generate CodeList Subset starting from SAS-XPT:

and in the dialog that is displayed, select your newly generated (but still empty) codelist:

Then select your dm.xpt file using the "Browse.." button. For example leading to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 77

One sees that "ARMCD" is automatically selected as the SAS-XPT variable to retrieve from, but
you can of course still change that by using the dropbox.

After clicking "OK", the SAS file is being analyzed, and a message is displayed:

It states that a new codelist will be generated with the OID "CL.ARMCD.NEW" and which will be
populated with the distinct values from the ARMCD variable in the dm.xpt file.
We decided to make this a new codelist, as when one is not satisfied with the results of the retrieval.
one can still use the original codelist, and add values there.
Of course you can later always change the value for the OID (identifier) of the codelist. It is just an
identifier and has no meaning by itself.

After clicking "OK", one is presented with:

One can then still exclude some values by unchecking one or more checkboxes, e.g. due to
regulatory requirements for the codelist (think about "OTHER", "MULTIPLE", "--ALL"). In this
case, we accept everything by clicking "OK", leading to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 78

The system has now detected that the "ARMCD" variable is also used in the TA and TV dataset
definition, for which the variable identifiers are "IT.DM.ARMCD" (from the dm.xpt file),
"IT.TA.ARMCD" (for the TA dataset definition) and "IT.TV.ARMCD" (for the TV dataset
definition) and asks whether the system should assign this new codelist to these 3 variables.
You will usually want to have that, and thus check all three checkboxes.

After clicking "OK", one gets some additional advice ...

This is good! For example, when having generated the items in the codelist by retrieval from the
SAS-XPT file, there is no information about the meaning of the generated codes like
"WONDER10" and "WONDER20" as they were obtained:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 79

As the system only has retrieved "WONDER10", "WONDER20", "PLACEBO" and "SCRNFAIL",
it has assigned the same values for the "decode". As we did in the prior case, we can then still
change that by clicking on the "+" icon in the table with the codelists for "CL.ARMCD.NEW", and
then "drill down" to the individual items.

Cleaning up your define.xml

After working some time on your define.xml, you will probably want to clean up some things.
You might have some variables, valuelist definitions, comment and method definitions, and even
"where clauses" that you once defined, but then finally decided not to use.
Technically spoken, this means that you have "definitions" (e.g. "def:CommentDef") that are never
reference. This might even happen to variable definitions ("ItemDef"), for example "permissible"
variables that you loaded from the SDTM template, but that you do not use in any of your datasets.

Having unreferenced definitions is in fact not a problem at all - they will even not show up in the
HTML view that you get when displaying the define.xml using the stylesheet.
However, the FDA does not like it.

In order to clean up your define.xml, use the menu "Edit - Clean".
An inventory of all unreferenced "definitions" is then made and the result displayed:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 80

informing us that there is 1 unreferenced ValueList (def:ValueList element), 2 "where clauses"
(def:WhereClauseDef", and 1 unreferenced method definition ("MethodDef") and 1 unreferenced
comment definition ("def:CommentDef").

By clicking a "Show unreferenced" button, one can immediately see which definitions are
unreferenced. For example for "MethodDef":

The user can now decide which type of unreferenced elements can be cleaned up, i.e. be removed
from the define.xml. For example, if we do want to remove all unreferenced comments
("def:CommentDef") and "where clauses" ("def:WhereClauseDef"), but keep unreferenced "method
definitions" (e.g. because you still want to use them later) and unreferenced "value list definitions",
check the corresponding checkboxes:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 81

and just click "OK" to start the cleanup action.

If you then use the menu "Edit - Clean" again, the result is:

The effect can of course also immediately be seen by inspecting the tables for the "WhereClause"
and for the "Comment" or by inspecting the define.xml XML itself using "View - define.xml as
XML".

Saving your work to file

Independent on whether you want to clean your define.xml or not, you will want to save your work
from time to time.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 82

By default, the software already saves the define.xml file every 5 minutes to a file in the folder
"autosave", which is a subfolder to the folder where you installed the software.
You can change the "autosave" intervals by using the menu "Options - Settings" and look for the
field "Number of minutes between define.xml autosave":

You will only be allowed to enter integer values. If you set "0" or a negative number, no autosaving
will be done at all.

The files in the "autosave" directory have a name allowing you to find out when exact they were
created. For example:

The file with name "ODM_2019_10_19_17-29-28.xml was created on October 19nd at 17:23:28
local time (24 hour notation is used).

So, even if the software or your computer would crash, you can always recover your earlier work.

Remark that it is not a bad idea to regularly clean up the contents of the "autosave" directory.

To actively save your define.xml to file, use the menu "File - Save define.xml".
The following dialog is displayed:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 83

At this point, you can still change some of the metadata.

You can also select whether your output define.xml needs to have a reference to the stylesheet file.
You can choose between not adding a reference at, adding a reference to the default stylesheet file
delivered by CDISC, or to add a reference to a stylesheet that you developed yourself.

In the case of the latter choice, use the "Browse" button to browse for the name and location of that
stylesheet file.

Remark that it remains your own responsibility to add (or copy) the stylesheet file to the directory
where you save the file to. For the latest version of the CDISC define.xml stylesheet, please look in
your define.xml CDISC distribution package or the CDISC website.

After clicking "OK", you will be asked where the file needs to be written to:

http://cdisc.org/define-xml
http://cdisc.org/define-xml

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 84

Please also remark that is not always necessary to first save your work to file in order to display
your define.xml in your favorite browser. As explained before, you can always use the menu
"View - define.xml in browser".

Creating ValueLists

Creating ValueLists (value-level metadata) is often seen as one of the most challenging tasks when
creating a define.xml. With our software however, it becomes very easy.

ValueLists are usually created when there are different "test codes", and the datatype, the maximal
length, units and associated codelists for the results differ depending on the test codes. Typical
examples are found in the "Findings" domains like VS (vital signs), LB (laboratory) and EC
(electrocardiogram). For example, for vital signs, systolic and diastolic are integer number (with
mmHg as unit), weight is a float, and "frame size" is text and governed by a codelist. For laboratory
findings, the valuelists will usually be even more complicated.

Valuelists are mostly created based on --TESTCD and then assigned to –ORRES, and to --STRESC
variables. They can also be assigned to --ORRESU and/or --STRESU variables.
For supplemental qualifiers, a valuelist is very often assigned to QVAL, based on QNAM.

In this manual, we will show how to set up a valuelist for VS (vital signs)
The best way to start generating a valuelist is to start from a codelist. Let us suppose that you have
already loaded the CDISC-CT codelist for VSTESTCD:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 85

As one can see, there is a large number of tests for vital signs, and it might be that you have some
more, or some less in your study, and have already extended or subsetted the codelist for
VSTESTCD.

In order to start developing a new ValueList for vital signs tests, use the menu "Transform -
CodeList to ValueList":

This results in:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 86

and select the codelist "CL.C66741.VSTESTCD - Vital Signs Test Code" (you can search for a
specific codelist using the "Search" field and buttons)
If you started from a set of SAS-XPT files, and have subsetted this codelist yet, you will of course
select the subsetted codelist22.

Remark the checkbox "Create simple 'WhereClause' automatically. When holding the mouse over it,
more explanation is displayed:

22In case you selected a codelist with many entries, the system will first provide a message that it might be useful to
subset the codelist first. You can then still interrupt the process and do the subsetting first. For example, the by
CDISC published codelists for LBTESTCD and LBTEST have several hundred entries, but you will not have used
them all in your study, so you should then subset these codelists first.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 87

We will explain this in detail in the next section "Automatically assigning WhereClauses to
ValueList entries". We will however leave the checkbox unchecked for now.

After clicking "OK", this immediately leads to the following dialog and table:

In the upper right part of the dialog, a new identifier (OID) is proposed for the ValueList, consisting
of the prefix "VL." and the OID of the original codelist:

You can change it and assign another OID, but in most cases you will probably want to keep the
proposed one, as it immediately shows that the ValueList was derived from the "VSTESTCD"
codelist.

The table contains a list of all items in the codelist:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 88

The red fields indicate that these are mandatory fields, and the you must provide a value for it.

We can now starting editing the table. In first instance, we want to delete those rows (test codes)
that are not applicable to our study. Usually this will be easier if we already subsetted the vital signs
codelist, and use that as a starting point for our valuelist. Deleting the unnecessary rows can e.g.
lead to:

Remark that one can remove more than one row at the time by using the "Ctrl" key when selecting
rows. Then use the "Remove Row" button to remove the selected rows.
Usually the field "Description" is very useful to understand the codes from the codelist. Use it!

For each remaining test, we now need to assign the appropriate data type. Usually, this is
immediately clear by a look on the CRF. For example for BMI we expect a float, whereas for
"Hearth Rate" we probably inspect an integer (depending on the unit that was used, mostly "beats
per minute"). For "Body Frame Size" however, there will usually be an associated codelist
(checkboxes on the CRF) with choices like "small", "large" etc..

For example:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 89

It is a good idea now to click the button "Validate" (the cyan colored button near the bottom). This
will lead to:

I.e. we also need to provide the maximal length for each of the test results23.

We fill the "Length" field, and then validate again using the "Validate" button:

Everything looks all right, except that the "WhereClause" field is still colored red.

We also still need to assign a codelist to the item "Body Frame Size" (FRMSIZE) as the CRF shows
checkboxes (choices) for this. It might be that we have already generated a separated codelist for
this, but it might also be that we can use a CDISC codelist for "body frame size". For example,

23Remark that for datatype "Date", "Time" and similar data types, no maximal length needs to provided.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 90

clicking the "CodeList" field for "SIZE" leads to:

When making decisions about which codelist is applicable, holding the mouse over a selected item
always shows the allowed values, which is very helpfull.
Also remark that "SIZE" is an extensible codelist, so if you have more checkboxes on your CRF for
"body frame size" than "Small", "Medium" or "Large", you may want to extend that codelist (see
further on).

So we now have:

Working with the "Where Clause" is often seen as the most difficult part of define.xml 2.0.
However with the wizards provided in our software, this becomes very easy.
As of define.xml 2.0, a "Where Clause" must be provided for each item in a valuelist. It is a
"machine-readable" as well as "human-readable" description about when the valuelist item applies.
For example, "FRMSIZE" information (data type, length, associated codelist) will be used when ...
the value of VSTESTCD is "FRMSIZE"... Looks logical isn't it?

The define.xml 2.0 specification (and SDTM sample file) however shows a more complicated
example for VSORRESU (vital signs original result unit) where the value is "inches" when
COUNTRY (in DM) is "USA" and "centimeter" when COUNTRY is either "MEX" (Mexico) or
"CAN" (Canada).

Now click the most-right cell "WC.IT.BMI". This opens a wizard for setting up the "where clause":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 91

The identifier (the OID) has already been created, you can however change it (mostly you will want
to keep the one that is suggested).

The "Comment" field only needs to be populated when your "where" contains variables from other
domains. This is well explained in the define.xml 2.0 specification in example 4.2.2.2 about the
metadata for VSORRESU (vital signs original result units) depending on the country (USA, Mexico
or Canada).
If you fill something into the "Comment" field, a "def:CommentDef" element will be generated and
a reference to it is added in the "ItemRef" element within the ValueList.

Then you can set the number of condition "RangeChecks" that will be combined. For example, if
you want to have a condition like "where the test code is BMI and the age is less than 70), then you
will need two "RangeChecks" and need to set the "Number of RangeCheck" spinner to 2.
In our case however, we only need to state "where the vital signs test code is BMI", so we can leave
the spinner to "1". Also the value for the "Comparator" can be left to "EQ" as it means "equals to"
as is also shown by the tooltip:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 92

We then still need to assign the SDTM/SEND/ADaM variable in the condition definition which in
our case is "VSTESTCD". It can quickly be found by typing the first characters "VS" and then
selecting "VS.VSTESTCD":

The "CheckValue" then still has to be typed in. It is "BMI".

You can always check what you have developed as a condition by clicking the button "Show
'Where' Clause". The human readable condition is then displayed. In our case:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 93

Now click OK until back in the table with all ValueList items.

Setting the "WhereClause" now needs to be repeated for all the items in the "ValueList" table.
Regularly use the "Validate" button to ensure that (at least structurally) everything is correct.
Finally, one would obtain a table without any red cells anymore:

In most cases, you will also need to add an "Origin" to each of the variables (you can still do it later
too, but with the danger that it is forgotten). In order to add an "Origin", click in the "Origin" cell.
For example, for "BMI":

In this case, the "Origin" is derived, as the BMI was not captured on the CRF, but was calculated
from "height" and "weight". So, in this case, one needs to set it to "Derived":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 94

and after clicking "OK":

Now we should also provide the "method" how the BMI was calculated. For this click in the
"Method" cell. This results in:

and one can e.g. add:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 95

And after clicking "OK":

Adding an "Origin" and a "Method" will automatically create a "def:Origin" and a "MethodDef"
element in the define.xml (with references), so you will later still be able to change the information
using the regular methods.

In a similar way, one can always add a "Comment" by clicking in the "Comment" cell. This will
generate a "def:CommentDef" with a reference to it, so that you can still later change the
information.

Essentially, we should add an "Origin" to each of the newly created value-level variables, for
example for "DIABP":

Now, the diastolic blood pressure was captured using the CRF, but we haven't added the
information yet about where the annotated CRF resides. So, we are not allowed yet to add the page
information yet. When "CRF" is clicked, the following message appears:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 96

However, as we will to have to add an "Origin" to each of the variables, domain variables as well as
valuelist variables, we can do this later when assigning origins to all of them.

When done editing the table, then clicking "OK" leads to the following message:

showing a nice summary of what has been created.

You can now always edit the created valuelists, variable definitions, comments, method descriptions
and "where clauses" by selecting the appropriate tab. For example, for "ValueLists":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 97

or for "Where Clauses":

Also remark that new variables (at the "value" level) have been created. These appear in the
"Variable Definitions" table:

After you have defined where the annotated CRF resides, and how that file is named, you will be
able to add the "Origin" to each of the variables, be it domain variables or valuelist variables.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 98

Automatically assigning WhereClauses to ValueList entries

When creating a valuelist starting from a codelist, you will have noticed the checkbox "Create
simple 'WhereClause' automatically":

When holding the mouse over it, more explanation is displayed:

In order to generate such "WhereClauses" you will already need to have assigned the codelist to a
variable. In the case of "Vital Signs Code" (CL.C66741.VSTESTCD), you will almost surely have
assigned this codelist to the variable "VSTESTCD":

If the codelist was not assigned to any SDTM/SEND/ADaM variable, and the checkbox "Create

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 99

simple 'WhereClause' automatically" is checked, a warning message will be displayed:

If however, the codelist was already assigned (for example the VSTESTCD codelist to the
VSTESTCD variable), all the "WhereClauses" will be generated automatically. These are simple
"WhereClauses" with the structure:

"where testcode EQ 'valuelistvalue'"

For example, for the valuelist variable "DIABP" from the codelist VSTESTCD, the "WhereClause"
that is generated corresponds to:

"where VSTESTCD EQ 'DIABP'"

So, let us try this out for the codelist VSTESTCD, and generate a ValueList from it. When the
checkbox "Create simple 'WhereClause' automatically" is checked, this results (after a few seconds)
in:

One now notices that the "WhereClause" cell is not colored, i.e. the software generated a
technically correct "WhereClause" for each valuelist entry. One can see the generated
"WhereClause" by holding the mouse over the cell. For example:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 100

for the cell "WC.IT.BMI"

You can of course still refine the "WhereClause" by clicking on the cell. For example, for the
"WhereClause" for the valuelevel variable DIABP:

For example, if you would have a "WhereClause" stating "where the VSTESTCD is 'DIABP' and
the country of measurement is 'USA' or 'Canada'", you can easily do so using the wizard by adding
an extra condition, like:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 101

and when clicking the "Show 'WhereClause'" button, the "human-readable" expression is displayed:

You will probably be able to generate over 90% of the "WhereClauses" automatically in this way,
but it is important to understand that checking them is necessary.

After clicking "OK" until one gets in the main window, and then selecting the tab "WhereClause
Definition", one sees the newly generated "WhereClauses" in addition to any already generated:

Important remark: as generating valuelists from codelists is computing intensive, especially when
also automatically generating the "WhereClauses" automatically, it is recommended to subset the
codelist first to what appears in the CRFs when starting from the by CDISC published codelists. For
example, the LBTESTCD codelist has several hundred entries, and it can take 5-10 minutes to
convert it to a valuelist (containing the several hundred entries) when also generating the
"WhereClauses" automatically. Also, as you will need to assign the datatype, lengths, codelists etc.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 102

for each valuelist variable, it makes sense to subset the codelist LBTESTCD first to what is exactly
needed, and then to create a valuelist from that subset.

Of course, you can then still edit any "WhereClause" here. For example for EGTESTCD
"PRMEAN":

When clicking the "Edit" ("+") icon for WC.EG.EGTESTCD.PRMEAN, exactly the same wizard
will show up as the one that was used during the generation of the "WhereClause".
Of course one can also add new "WhereClauses" here, they do not need to be created from the
"CodeList to ValueList" wizard at all.

Also do not forget to assign valuelists to SDTM/SEND/ADaM variables themselves. For example,
you will usually assign the valuelist with the different vital sign test codes to VSORRES, as this
then describes the metadata of VSORRES (datatype, length, codelist) depending on the value of
VESTESTCD.
If you want to assign a valuelist to VSORRESU (and other --ORRESU and --STRESU) variables,
you will first need to subset the "VSRESU" (Units for Vital Signs Results) codelist or "UNIT"
codelist, and then generate a ValueList from it.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 103

For example, for assigning the previously created ValueList to VSORRES, go to the "Variable
Definitions" tab, select VSORRES,

and then click the "Add Information" ("+") icon on the left of "VSORRES", and choose the tab
"ValueList Reference":

where you can simply drag-and-drop from the list of existing ValueList definitions on the right to
the cell on the left, or click the "ValueListOID" cell, after which a list to choose from is displayed.
This is explained in detail in the section: "Assigning valuelists to SDTM/SEND/ADaM variables".

P.S. As ValueLists only have an OID (but no "Name" attribute), it may be useful to assign a
meaningful OID to each entry in the "ValueList" table.

Annotated CRF and Supplemental Documents

When doing a regulatory submission, you are still required to provide an "annotated CRF" in PDF
format24. Also, you will often want to supply supplemental documents, like a "reviewers guide",
also in PDF format.

24It would be much better if the requirements were that an ODM file with the study design must be delivered, where the
questions are annotated with SDTM information. ODM is machine-readable, PDF isn't.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 104

In define.xml, you can provide links to such documents, so that when the reviewer inspects your
define.xml in the browser, a single click suffices to open the annotated CRF or supplemental
document, ideally on the page of interest.
This is taken care of in define.xml documents by so-called "def:leaf" elements, allowing you to
specify a reference ("href") to the document of interest.

In order to provide such a leaf, click the tab "Document Links":

The following table is displayed:

you can now provide an ID and a reference (usually just the file name) for each document. For
example, to define a link to an annotated CRF and to a "reviewers guide":

When you then click the "Validate" button, you will notice that some information is still missing:

So you will need to provide additional content. This can be provided by clicking on the "+" icon,
leading to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 105

prompting you to provide a title by clicking the "+" icon again:

The same should then be done for the "reviewers guide".
Revalidating then leads to:

Both "+" icons turned orange, meaning that additional information has been added and there are no
validation errors.

We now only defined the "leafs", i.e. the hyperlinks and a title for each of the documents, but the
define.xml still requires us to state explicitely which of these is the "annotated CRF" (define.xml is
machine-readable and machines should not rely on naming conventions only), and which
documents belong to the "Supplemental Documents".

In order to do so, click the tab "Annotated CRFs":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 106

Currently, it is only allowed to provide a single PDF with all annotated CRFs in it (separate
documents, e.g. one for each CRF, is not allowed).

Clicking the "+" icon leads to:

and one can now "drag-and-drop" a "leaf" from the right to the first cell on the left, with the result:

Click OK to finalize the process of assigning an "annotated CRF" to the study submission.

The same can then be repeated for any other documents like the "reviewers guide", by using the tab
"Supplemental Documents":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 107

Remark that you can add more than one supplemental document.

Assigning valuelists to SDTM/SEND/ADaM variables

ValueList are used for informing the reviewers about the metadata for individual groups of data. For
example, for the Laboratory domain (LB), there can be hundreds of tests, and the information for
each test can differ depending on the test code. For example, albumin measurements will have other
units as glucose units.

Essentially, most findings domains have "hypervertical" structure, with a data model based on the
"Entity - Attribute - Value" model (EAV model) This means that we have a single "entity" column
(defining what the row "is about"). In the "Findings" domains, this is usually the --TESTCD
column25. There then are a number of attributes (like additional names and synonyms, but most
importantly the --ORRESU (original result unit) and the --STRESU (standardized result unit). The
"value" in EAV is delivered by the --ORRES column and by the --STRESC column and or the -
-STRESN column26.

We already generated a valuelist "VL.CL.C66741.VSTESTCD" containing additional information
(metadata) for 9 value-level vital signs variables. Currently, this valuelist is still "on its own", and
we need to provide the information to which SDTM/SEND/ADaM variable it applies.

The define.xml 2.0 specification is very clear about this (section 4.4):

In our case, we provided information about what length of result can be expected, what datatype,
and whether the result is coded, depending on the value of the VSTESTCD. So, we must assign the
valuelist "VL.CL.C66741.VSTESTCD" to VSORRES.
If the value of the standardized result (VSSTRESC/VSSTRESN) is just copied from VSORRES,
we can additionally also assign this valuelist to VSSTRESC and/or VSSTRESN.
25A better choice would have been the --LOINC column, at least for LB and VS.
26The reason that two columns are defined for the standardized result is due to the extremely old SAS-XPT format, in

which columns can only either be "numeric" or "character".

https://en.wikipedia.org/wiki/Entity–attribute–value_model

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 108

In order to assign the valuelist "VL.CL.C66741.VSTESTCD" to VSORRES, select the tab
"Variable Definitions" and look for "VSORRES" (one can use the "Show Search Panel"). One
easily finds the row:

Depending on how the variable definitions were created, you will still want to assign another
"Length". The above picture shows a maximal length of "80" coming from the template SDTM. If
you generated the variable definitions from a SAS-XPT file, the maximal length will probably
already be correct, unless of course that you generated your SAS-XPT files with fields that are "too
broad", something that the FDA doesn't like at all27.
Suppose that the longest result for VSORRES was 20 characters. In that case we need to set the
"Length" to 20, and also take care that this field is not longer than 20 bytes in the SAS-XPT file:

Remark that max. Lengths have to be assigned to all variable definitions, except for when the data
type is a date, time or datetime or an incomplete version of one of these three.

In order to assign the valuelist to VSORRES, click the "+" icon. This leads to:

In this case, the "Label" was already added (in define.xml 2.0, it is added to the "Description"
element). Be sure that the label for any domain variable is exactly identical (case sensitive!) to what
is defined in the SDTM-IG, SEND-IG, or ADaM-IG.
Unfortuanetely, there is no room for any deviation at all here, even if a slightly different label would
better explain what the variable is about. See the article

27This is another relict of the SAS-XPT era. When using XML instead of SAS-XPT, there would be no problem at all.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 109

"http://cdiscguru.blogspot.com/2015/12/sdtm-labels-freedom-or-slavery.html" for further details.

Getting the label 100% correct can especially be challenging in case of additional variables that
come from the model rather than from the implementation guide (like additional timing variables)
and when coming from the SAS-XPT files themselves. In future, we will use the "CDISC Library
API" to check labels against the published ones from CDISC.

Another tab in this dialog is the "ValueList Reference" tab. When clicked, the following appears:

Until now, we only defined one valuelist, so there is only one entry at the right.
In order to state that the valuelist "VL.CL.C66741.VSTESTCD" applies to the variable
"VSORRES", just drag-and-drop it from the right to the left, leading to:

and you are done...

Later, when inspecting the variable VSORRES in the browser, this will then appear as:

http://cdiscguru.blogspot.com/2015/12/sdtm-labels-freedom-or-slavery.html
http://cdiscguru.blogspot.com/2015/12/sdtm-labels-freedom-or-slavery.html
http://cdiscguru.blogspot.com/2015/12/sdtm-labels-freedom-or-slavery.html

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 110

Assigning an Origin to variables

Every data point in a submission has an origin. It is of utmost importance for traceability that this
information is provided to the reviewer. It can be that the data point comes from the CRF, it can
come from the protocol, or it can be assigned or derived (e.g. all --DY variables). It can also come
from an electronic data transfer (e.g. some laboratory data that were not captured on a CRF), or
(usually in case of ADaM), it can come from a "predecessor", e.g. when the data point was copied
from SDTM into ADaM.

The origin can either be assigned on the "domain variable level" or on the "valuelist level". For
example, "STUDYID" will always be identical and will probably come from the protocol. So we
can assign it at the domain variable level.

On the other hand, "VSORRES" will need to be assigned on the "valuelist level", as there usually is
no field "vital sign original result" on the CRF, but there are fields "systolic blood pressure",
"systolic blood pressure", "height", "weight" and so on.
So it does not make sense (it even would probably be an error) to assign an Origin to VSORRES.
However, as we assigned a valuelist to "VSORRES", this is already an indication that origins will
be assigned on the valuelist level, i.e. for "DIABP", "SYSBP", "HEIGHT" etc..

So in our variable list, we will leave the value for "Origin" empty for VSORRES, but will assign
origins for the valuelist variables "DIABP", "SYSBP", "HEIGHT" etc..

In order to assign an origin to e.g. the vital sign "BMI", look for it in the list of "Variable
Definitions":

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 111

Then click the "+" icon to add additional information, and select the "Origin" tab:

Although the define.xml XML-Schema allows you to add more than one origin, this is essentially
not allowed. If you need to assign more than one "origin", this usually means that you did not well
enough develop your valuelist.
For example, if you have have different glucose values, and one set was delivered electronically by
lab 1, and the other set was captured on the CRF, you may want to have two different variables
"IT.GLUC.LAB1" and "IT.GLUC.LAB2" so that you can assign "electronic data transfer" to the
former as being the origin, and "CRF" to the latter28. In the "where clause" you will then need to
differentiate e.g. by the "DM.SITE" or "LB.NAM" (laboratory name) variable.

But now back to our BMI valuelist variable. In this case the origin is "derived", as the value was
calculated from the weight and height. So we assign "Derived" as the type, by clicking in the
"Type" field which leads to the following dialog:

28Unfortunately, the situation for lab values can be even much more complicated, as CDISC and the FDA still refuse to
allow the LOINC code of the lab test as the unique identifier.

http://loinc.org/

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 112

Remark that the option "Other" is essentially not allowed in the case of a regulatory submission. If
one selects this option, the following warning is shown:

In our case however, we set the "Origin Type" to derived, leading to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 113

When the type is "Derived" we also need to add the derivation method. We already saw how that
can be done when creating a "ValueList" from a "CodeList" and will revisit this topic later.

For the "diastolic blood pressure", the origin is the CRF. So, when drilling into the details for
"DIABP" we get:

When then clicking the "Type" field, we select "CRF":

leading to:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 114

Clicking the "+" icon then allows to define where the field for "diastolic blood pressure" can be
found in the annotated CRF:

We state that the information can be found in the document defined by the "leaf" "LF.aCRF" by
doing a drag-and-drop from the right to the left:

and the further details about "where" in the annotated CRF by clicking the "+" icon:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 115

We can either provide no page details at all, or a page list (one or more page numbers separated by a
space), or a page range:

The "Validate" button helps us avoiding making syntactic errors (like using comma-separated page
numbers).

Suppose that the diastolic blood pressure was collected in different forms, which appears as pages
11, 13 and 16 in the "annotated CRF PDF". The selection would then be:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 116

After clicking the OK button, the information is stored in the define.xml.

When viewing the define.xml in the browser, the result then is:

When the user than e.g. clicks on "11" in "CRF Pages", then the browser should automatically open
the "annotated CRF PDF" on page 1129.
Like this, one should essentially assign an "Origin" to every variable in the define.xml. If the
variable is a domain variable to which a valuelist has been assigned, one will usually assign the
"Origin" to the value-level variables rather than on the parent domain level variable (as was the case
for VSORRES).

For developers of define.xml, it is not always clear what "Origin" should be assigned to variables
that do not represent data from a CRF (e.g. "STUDYID", "DOMAIN", "--CAT", "--DY").
Therefore, a list is provided in the appendix with typical "Origin" assignments for SDTM variables.
Please remark that these assignments are suggestions only, and not binding at all.

29Remark that this functionality is (or must be) provided by the stylesheet. It is not programmed in the define.xml itself.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 117

Retrieving PDF Page Numbers from the annotated CRF

Getting the PDF page numbers from the annotated CRF into the define.xml can be a tedious task
that is error prone. Therefore we developed a feature to extract annotations from the annotated CRF
and compare them with the variable name definitions (ItemDefs) and the "WhereClause"
definitions. This is not a "black box" feature as in some other software packages: before doing the
PDF page assignments, the user can still inspect the suggestions, and select the ones to be
implemented.

Of course, you will first need to add the location of the annotated CRF to the define.xml using the
menus "Add - Document Link" and "Add - Annotated CRF".

Once this link is present, use the menu "Extra - Insert CRF Page Numbers from annotated CRF":

The system will then look up the location of the annotated CRF you already provided and start
retrieving all annotations:

It will then analyze them, comparing them with all define.xml variable names that have been
defined, but also with all "WhereClause" definitions.

For each, a "similarity" is calculated: if it is 100, meaning that the annotation exactly matches the
variable name from the define.xml or the "WhereClause" definition (as human-readable text). For
the latter, similarities of over 60-70% usually mean a "hit".

When the analysis is ready (this can take 1-2 minutes in the case of a large study - but you probably
only need to do this once), the following dialog is presented:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 118

For each annotation that could be matched to a variable (or to a set of variables that have the same
"WhereClause"), a checkbox will appear in the dialog.

When the Item is colored green, this means that the Origin was already assigned in the define.xml
as of type "CRF" and the page number(s) or the page range30 exactly match with the page numbers
retrieved from the annotated CRF. In this case you will probably not want to reassign the page
number(s) in the define.xml.

In case the Item is colored red, this means that the "Origin" in the define.xml was not assigned to be
"CRF", but something else. In the above example, the origin was assigned to be "Protocol", but a
"STUDYID" annotation was found in the annotated CRF on page 6.

In case the Item is colored blue, this means that no origin was assigned yet in the define.xml. All
items will be colored blue e.g. in case that you have not assigned any origins yet, and first want to
automatically assign the ones that are of type "CRF" and are retrieved from the annotated CRF.

In case the Item is colored orange, this means that page numbers were retrieved from the annotated
CRF, but these do not coincide with the ones that were already assigned. For example:

30The algorithm takes into account that the define.xml def:Origin has a "FirstPage" and "LastPage" assigned. For
example if in the define.xml one already FirstPage="6" and LastPage="10", and the page numbers from the
annotated CRF are 6, 7, 8, 9, and 10, this is found to be a perfect match.

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 119

For QSTEST, an 100% matching annotation was found in the annotated CRF on pages 13, 14, 15
and 17, but in the define.xml, only page number 17 was assigned.

You can now check the checkboxes for the items for which you want to auto-generate the
"def:Origin" page numbers in the define.xml, based on your considerations of what is correct and
meaningful. For example:

The "green" ones were already correctly assigned, so you don't want to change that anymore.
For PE.VISIT and QS.VISIT you decide that the earlier assignment "derived" was correct, this
although there as such annotations on pages 4 and 5. So you leave these unchecked too.
Just for QSTEST, QSCAT and QSORRES, you decide to implement the automated generation of a
"def:Origin" in the define.xml.

After clicking OK, the assignments are implemented. If one then does an "Origin" inspection for
e.g. QSORRES, one will find:

The Define.xml Designer 2022 - User Manual for designing and developing Define.xml files p. 120

with these page numbers extracted from the annoted CRF.

The same also works for "ValueList" variables, for example:

A "match" has been found for the CDSS13 "ValueList" variable with a high "similarity", for which

the PDF annotation is "QSORRES when QSTESTCD = CSDD13".

In this case, no CRF pages have been assigned yet in the define.xml (the item is colored blue), so
we would like to have this done, we do check the checkbox and click "OK"

The result upon inspection is:

Conclusion: this new feature in the ODM-Define-XML Designer allows you to extract page
numbers from the annotated CRF semi-automatically, in such a way that the user still has full
control of which page numbers are copied to the define.xml.
This feature will save you many hours of tedious and error prone work, for large studies maybe
even days.

	Introduction
	Background
	Starting the software and main principles
	Creating a new define.xml
	Creating a define.xml starting from an SDTM/SEND/ADaM template
	Creating a define.xml starting from an existing set of SAS-XPT files

	Ordering the dataset definitions
	Adding and subsetting CDISC Controlled Terminology
	Adding and subsetting codelists from SAS-XPT files
	Transforming an "EnumeratedItem" CodeList into a "CodeListItem" CodeList
	Displaying your define.xml as HTML in a browser using a stylesheet
	Creating and populating Sponsor-defined Codelists
	Cleaning up your define.xml
	Saving your work to file
	Creating ValueLists
	Automatically assigning WhereClauses to ValueList entries
	Annotated CRF and Supplemental Documents
	Assigning valuelists to SDTM/SEND/ADaM variables
	Assigning an Origin to variables
	Retrieving PDF Page Numbers from the annotated CRF

