
The Define.xml Designer 2026

User Manual for designing and developing Define.xml files in a modern way

Author: XML4Pharma
Last update: 2026-02-03

Table of Contents
Table of Contents ... 1
Introduction .. 1
Installation requirements.. 2
Starting the Define-XML Designer.. 2
Starting a new define.xml .. 4

Starting from a define.xml template ... 6
Starting from a set of submission files ... 10
Starting from an existing define.xml file.. 23

Editing define.xml information - Basics .. 24
Adding the Annotated CRF information .. 24
Simple Editing .. 26
Simple Viewing .. 28
Editing sub-information.. 31
Adding / Editing Origin/Source information.. 36
Adding / Editing "Dataset Structure" and other dataset properties .. 41
Adding and removing dataset definitions... 46
Adding dataset definitions (domains) from another template .. 52

Using Autosave .. 55
Adding to / Editing the list of variables for each dataset definition .. 56
Editing variable properties ... 65
Subsetting CodeLists.. 71
Generating Single-Item Subset CodeLists ... 82
Generating ValueLists .. 84

ValueLists for Supplemental Qualifiers (SDTM)... 85
ValueLists for other variables from SAS-XPT files ... 90

SDTM Example .. 90
ADaM example... 93

Generating ValueLists starting from (subset) CodeLists and the CRF... 95
ValueLists for SDTM and SEND - a simple example .. 95

ValueLists for ADaM - a simple example .. 115
Extracting page numbers from an annotated Case Report Form (aCRF) .. 127
Starting Editing from within the "HTML View" ... 132
Adding definitions from CSV files .. 136

Adding variable properties from CSV files.. 136
Adding dataset properties from CSV files.. 145

Cleaning ... 147
Loading additional domains / dataset definitions from a template .. 149
Saving to and loading from a local Library ... 154
Validating the define.xml ... 157

Introduction
This user manual describes the features for designing and developing define.xml v.2.1 and 2.0 files.

All too often, define.xml files for regulatory submissions are generated after the CDISC SDTM, SEND or ADaM files
have been generated, i.e. in a "post-process" step, mostly leading to low-quality define.xml files. Even in the cases that
the define.xml is generated before the study starts, i.e. as a "requirements document" for the datasets to be developed,

this is based on setting up Excel tables, and using "black box" software1 in a "trial-and-error" method.

The "Define-XML Designer" software allows to develop and fine-tune define.xml files starting either from templates
for the different SDTM, SEND and ADaM versions, from SAS-XPT datasets (and in future also from CDISC Dataset-
JSON), or from an existing define.xml file, and this in a very user friendly "WYSIWYG" (What You See Is What You
Get) way. No Excel is involved at all.

Installation requirements
The Define-XML Designer comes as a modern, GUI-based, Java software.
It requires Java 1.8 or higher being installed. If requested, the software can be delivered together with a Java
installation. As such, the software can be run on either Windows or Linux systems. Testing on MacIntosh is currently in
progress.
For a good display, a screen resolution of 1680x1050 or higher is recommended. As the software writes temporary files
and log files, the included "temp" and "logs" files needs to be (made) writeable.
There is no special installation procedure: just copy the (unzipped) files from the distribution to the directory you want
the software to run from.

Starting the Define-XML Designer
On Windows , look for the file "SDTM-ETL.bat" in the main directory and double-click it. On Linux, use the file
"SDTM-ETL.sh". In both cases, this results in:

showing a license message, and with a separate "console": this is where the logging will be displayed, which is also
written to a log file in the "logs" directory for traceability.
Clicking "OK" then leads to:

1 Meant are especially "Pinnacle21 Community" and the extremely expensive "Pinnacle21 Enterprise" software
packages.

https://www.cdisc.org/standards/data-exchange/dataset-json
https://www.cdisc.org/standards/data-exchange/dataset-json
https://www.cdisc.org/standards/data-exchange/dataset-json

asking the user whether he/she wants to work on either:
- a define.xml according to the old 2.0 standard (define.xml 1.0 is not supported anymore)
- a define.xml according to the modern 2.1 standard (recommended)
- a define.xml 2.1 implementing the "Analysis Results Metadata" (ARM) extension. This should only be used in the
case of an ADaM requiring ARM.

In case "Define.xml 2.1" is selected, followed by "OK", the following window is displayed:

The upper part shows the menu bar, together with some "shortcut" image buttons for "Open File", "Save File" and
"About" functionalities.

There are then 3 buttons "Global Study Variables"m "Study Metadata", and "HTML View". The latter will use the

default or user's stylesheet to visualize the define.xml in a "human-friendly way" (e.g. a "browser view").

The center part then will display editable tables to add information to the define.xml. In many cases however, the users
will want to use one of the many "wizards" to add or edit the information.

The bottom part contains a panel with a number of buttons for specific actions. Their functions will be explained later.

Starting a new define.xml
Use the menu "File - New define.xml" to start a new define.xml:

In case one wants to start from, or continue working on an existing define.xml, use the choice "Open define.xml". The
"Add/Merge" define.xml can later be use to merge two define.xml files, for example as one person is working on the
"Events" domains and another is working on the "Findings" domains.

When "New define.xml" is selected, this leads to the following dialog:

In the upper part, the checkbox "I want to start from a CDISC SDTM/SEND/ADaM template", it allows the user to start
from a SDTM, SEND or ADaM template define.xml, to which one can then add the details. This is the preferred way to
develop a define.xml even before the study starts, which can then be used e.g. as a "deliverables" or "requirements"
define.xml for the submission. Essentially, this should be the preferred way of working.

In still too many cases however, the define.xml only is generated after all the (SAS-XPT) datasets have been generated.
This is of course viable for the case of "legacy" dataset submissions.
Also this use case is supported by the "Define-XML Designer".

In most cases, the user also wants to add CDISC Controlled Terminology (CDISC-CT), as this is required by the
Define-XML standard. The software comes with all CDISC-CT published by CDISC in the last 10 years. When new

CT is published, it is made available from our website2.

In the lower part, the information regarding the study-ID, the name of the study, a description of what the study is
about, and the Protocol Name (which usually is the title of the protocol document) is to be added. The green color of the
fields mean that this information is mandatory to be provided.
Remark that define.xml uses "OID" (Object Identifier) whereas SDTM/SEND/ADaM use "STUDYID". These are
however the same thing. So, the first field needs to be filled with the value for the STUDYID.

So we e.g. fill the fields with:

Starting from a define.xml template
The Define-XML Designer software comes with templates for all major CDISC submission standards. In this example,
we will use SDTMIG v.3.4.
So we check the checkbox "I want to start from a CDISC SDTM/SEND/ADaM template", and then select
"define_template_SDTMIG_3.4_SDTM_2.0":

2 free of charge of course ...

One can also limit the list to the templates for a specific standard by clicking one of the "SDTM", "SEND" or "ADaM"
radiobuttons. For example for SEND:

or for ADaM:

One can then also select a version of the SDTM-CT by first checking "I want to load by CDISC Controlled
Terminology" and then "Only show Controlled Terminology for selected standard":

Remark that for ADaM, this also allows to load SDTM-CT as is often needed.

Clicking "OK" at the bottom of the dialog then starts loading the requested template and the selected CDISC-CT,
leading to another shorter dialog:

It also states that originally the template was generated from the CDISC Library using the API. This is a good thing, as
the CDISC Library is "the CDISC truth".
The only thing we then still need to do is to add some text for "MetaDataVersion Description".
This information will later also be displayed in the browser through the CDISC stylesheet. So we e.g. add:

and then click "OK", leading to an information message:

Especially important here is that all the CDISC-CT has been loaded, and the user will probably need to subset some of
it. For example, the CDISC-CT for "VSTESTCD" currently has 75 terms, from ABI (Ankle-Brachial Index) to
WTHTPCTL (Weight-for-Height Percentile), but it is expected that only those entries are submitted for the tests that are
actually planned. Later we will learn how to subset codelists.
Often, one will also want to add ValueLists, e.g. in SDTM defining the units (--ORRESU/--STRESU) as function of the
test, such as "mmHg" for blood pressure tests.
Also this will be explained in detail further on, e.g. how to generate a ValueList starting from a CodeList.
After clicking "OK", the tables with metadata begin to fill:

This becomes more obvious when one clicks the "Study Metadata" button:

The most-left tab already filled in the information which standards and versions are used.

When e.g. clicking the "Dataset Definitions" tab, one finds all SDTM domains from SDTMIG-3.4 listed:

We can now start editing the table, e.g. remove domains for which we do not plan to collect data and/or submit
information. Deleting a row in the table can simply be done by selecting a cell in that row and click the "Delete row"
button. If one deleted a row accidentally, no panic, as one can always revert to an earlier version - see the section
"Autosave and logging"

For the tab "Variable Definitions", one will find:

Before we will dig into how to further work with these tables, it will first be explained how to generate a "prototype"
define.xml starting from a set of (SAS-XPT) submission files.

Starting from a set of submission files
Starting from a set of existing submission files (currently only SAS-XPT format is allowed by regulatory authorities3)
can be a viable solution in the case of xxxx data sets. It is considered bad practice in the case of recently generated
SDTM, SEND of ADaM datasets, as the define.xml is the specification of the deliverables for the submission. So,
essentially, the define.xml should be developed even before the study starts, in the case of SDTM from the protocol and
the CRFs, and from the protocol and Statistical Analysis Plan (SAP) in the case of ADaM.
We do however recognize that this bad practice still exists in our industry, and decided to still provide support for this
use case.

After starting up the Define-XML Designer, and using the menu "File - New define.xml", we now select "I want to start
from a set of SAS-XPT files":

3 This is expected to change soon, at least for the FDA, now that CDISC Dataset-JSON has been developed and is cur-
rently being piloted at the FDA. This modern JSON-based format has many advantages over outdated XPT.

then select "SDTM", "SEND" or "ADaM" from the dropdown. Just for the example here, we will use SDTM.
We then select a set of XPT files using the button "Browse SAS-XPT", leading to:

We will use all the XPT files from a directory - this is the most usual case. After clicking "OK", a filechooser appears,
allowing us to select the directory where the XPT files are located:

and after clicking "Open", leading to:

providing a list of the XPT datasets in the directory, and providing an explanation that SAS-XPT only contains a small
amount of metadata, so that it is not a bad idea to check these, and that one will still need to add additional information
like ValueLists, the data source and origin, etc..
After clicking "OK", the system starts analyzing the XPT data and extracting information:

After this, it is always a good idea to select a version of the CDISC Controlled Terminology (CDISC-CT), as this will
allow us to add new terms where needed, to align with what has been planned (XPT only delivers what has been done).
For example, if there never was a "Severe" adverse event, the value "SEVERE" will not appear in the AE-XPT dataset,
and the generated codelist from the XPT will not contain "SEVERE", although "Severe" was an option on the CRF.
The checkbox "Only show Controlled Terminology for selected standard" can be of help to limit the possible choices. It
is not automatically checked, as for ADaM, one will often also want to load SDTM CDISC-CT.
Additional CDISC-CT can however also later be added.

So we e.g. select:

Underneath, there are a number of checkboxes:

The first one allows the system to automatically generate variable data type, maximal length and, in the case of the

"float" datatype, define the "significant digits"4 from the XPT content.
One will usually want to have this done in an automated way (the alternative is to add that information manually), so
this checkbox is usually checked.

The second checkbox "Add 'OrderNumber' to 'ItemRef' elements" allows to automatically add the "OrderNumber"
attribute and add a value for it automatically. Essentially, there is no need for this when the order in the file is also the
"display order", but many companies want to have "OrderNumber" included5.

The third checkbox allows the user to have "subset codelists" generated from the information in an external file. This
may be useful to have subset codelists generated automatically from the XPT content for specific variables. Reason is
that we e.g. do not want to have the complete list of allowed LBTESTCD values (about 2,500 items), but only these that
were actually in the lb.xpt file. Remark that we still then may need to extend this subset codelist when some tests were
planned, but never done, as these will not be appear in the XPT file.

A typical example of such a file with variables for which subset codelists need to be generated is:

Remark that lines starting with a "#" are "commented out". This allows a flexible way of managing the list with
variables for which "subset-codelists" need to be automatically created.
One can generate different instances of such a dataset with variables (e.g. different ones for ADaM), but it is always the
"subsetcodelistvariables.dat" file that will actually be used.

When the checkbox "Try to create subset Codelists from XPT content …" is checked, the following dialog is displayed:

explaining how this works.

4 "Significant Digits" is somewhat misleading here, as it is the number of characters after the decimal point.
5 This is also related to some false positive messages generated by the P21 validation software in the past.

Remark that we discourage to allow subsetting codelists for variables like "AESEV" and "AESER", as this can lead to a
define.xml that suggests that e.g. AESEV=SEVERE was not an possibility on the CRF. The define.xml should reflect
what was planned, not what was finally obtained.

Similar is the checkbox "Try to create sponsor-defined codelists from definitions in a "sponsorcodelistvariables.dat"
file:

An example of such a "sponsorcodelistvariables.dat" (in this case for SDTM) file is:

where we define that "sponsor-defined" codelists need to be created for all --CAT variables, as well as for ARMCD and
ARM in DM (Demographics), ETCD and ELEMENT in SE (Subject Elements), and EXTRT in EX (Exposure).

A typical example for ADaM can be:

The dialog that appears when the checkbox "Try to create sponsor-defined codelists from definitions in a
"sponsorcodelistvariables.dat" explains this very well:

The next two checkboxes are:

For the Supplemental Qualifiers, the Define-XML specification version 2.1 states:

An example is also provided:

where ValueLists are defined for the "Non-Standard Variable" (NSV - or "Supplemental Qualifier") "LBCLSIG"
(Clinical Significant) in LB, and "RTRINIT" (Rater Initials) in QS.

When the checkbox "Try to create for Supplemental Qualifier datasets from XPT content" is checked, the system will
try to generate these ValueLists automatcally.
Please be aware that such ValueLists are important to allow reviewers to "bring back" the NSVs to the parent domain in
their review systems.

One can also have ValueList being created automatically for some of the variables by checking the checkbox "Try to
create ValueLists from definitions in a "valuelistvariables.dat" file. An example of the contents of such a file (for
SDTM) is:

also here, lines starting with a "#" are "commented out.
For example, the last entry "LBSPEC WHERE LBCAT EQ HEMATOLOGY" will try to generate a ValueList on
LBSPEC, with the selection criterion is "where LBCAT = HEMATOLOGY". We will later look at the result of this.

Suppose we use the following choices:

We then still need to provide some information, like the identifier (OID) of the study (this will usually be equal to the
"STUDYID" in the XPT files), a "Study Name", "Study Description" (usually from the protocol) and "Protocol Name"
(usually this is the title of the protocol document). For example:

It surely is not a bad idea to check everything now before proceeding.
We have:

Remark that most of this information will later appear in the header of the HTML (browser) define.html, which is the
visualization of the define.xml.

When then clicking "OK", the system starts generating a "prototype" define.xml, which we will then further refine. It
first proposes some OIDs (identifiers) to be used:

These will however later not appear in the "View" on the define.xml - they are for internal usage only.

Clicking "OK" then leads to another dialog, allowing to select which standard version will be declared:

As we already stated that this is an SDTM set of data, and we selected version "2025-09-26" for the CDISC-CT version,
we still only need to provide the version of the SDTMIG from the dropbox:

After clicking "OK", a number of "progress bars" appear showing us the progress of the generation of the different
parts:

and when finished, the first set of generated data is displayed:

We can then still change the information - see the section "Editing define.xml information".

When selecting "Study Metadata" and then selecting the tab "Variable Definitions", we find:

and see that a good amount of information has automatically been generated from the content of the XPT files.
For example, for the "ValueLists":

Using the "HTML View" button (at the top, on the right), generates the "View" of our prototype define.xml:

Remark that you cannot close this window, it will automatically be updated each time you click the "HTML View"
button. You can however of course "minimize" it.
Remark the "[Edit]" hyperlinks in the tables. We will later explain their usage.

Starting from an existing define.xml file
You can of course also start from an existing define.xml file, either version 2.0 or 2.1 (the software does not support
Define-XML version 1.0 anymore). This can be a define.xml file that was created using this software, or from any other
system or software.
In order to do so, use the menu "File - Open define.xml", select the file using the file chooser, and it will then be
loaded.

If you choose the wrong Define-XML version at the start, a warning message will be displayed, e.g.:

In most cases you will want to have the application stopped immediately. If you don't want this, uncheck the "Exit now"
checkbox. However, this can then further lead to a lot of unexpected behavior.

Editing define.xml information - Basics
There are different ways in which the content of the define.xml can be altered using the Define-XML Designer: using
the tables and the table editor, using wizards, and from the HTML view of the define.xml.

Adding the Annotated CRF information
Especially in the case of SDTM, you will probably want to add the information that there is an annotated CRF.
If you know the Define-XML standard already well, you can do so using the tabs "Document links" (which allow you
to generate define.xml "def:leaf" elements for pointing to external documents" and "Annotated CRFs".
However, there is an easier way that automates this step completely.
To do so, use the menu "Add Annotated CRF":

This then creates the "def:leaf" for an annotated CRF with the name "acrf.pdf" for you and references it in the
"AnnotatedCRFs" element. The system then automatically jumps to the tab "Annotated CRFs" where one then finds:

and if one then clicks on the "View" icon (the magnifying glass), the following information is displayed:

Similarly, when selecting the "Document links" tab, one finds:

and one clicks on the "View" icon (the magnifying glass), one gets the detailed information:

Simple Editing
Let us start with the most easy one: editing an attribute of a variable. As an example, we can take the variable "SEX" in
DM (Demographics). In case we started from a template, the "Length" attribute, representing the maximal length of the
value for "SEX" has been set to "8" in case we opted to have the Length set from the longest value in the codelist.
which is "INTERSEX".

But in the CRF, only "Male" and "Female" are used, which need to be translated to CDISC-CT values "M" and "F". So,
we want to change the "Length" to "1".
In order to do so, just click in the cell for "Length" for "SEX" (which currently has the value "8"). The cell now
becomes editable:

and one can just type in another value, e.g. "1":

Remark that for such cells that expect an integer, any other character than 0 to 9 will be refused.
Later, we will also learn about how to automatically update the values for the variable length from one or more SAS-
XPT files (menu "Extra - Adapt Variable Length from SAS-XPT file contents"). So, at the end of the generation of the
datasets, you will not need to do this manually.

There are also columns where the value is enumerated, e.g. the "DataType" column. E.g. for RFXSTDTC (Date/Time of
First Study Treatment), we currently have:

and when clicking in the cell, the following "dropdown" is shown:

allowing us to change the value for "DataType".
For example, if this is a very simple study where there can never be more than one study drug exposure per day, it may
be that only a "date" (i.e. without time part) is collected, so we should set the "DataType" to "date":

with the result (after releasing the mouse button) being:

We can then similarly do so for the other timing variables in DM.
Remark that for most studies, only collecting the date, without time part, if often a bad idea, as it can easily lead to
problems when relative timings like "BEFORE", "AFTER", "DURING" need to be assigned, or when the EPOCH must
be assigned based on timing variable values.

Some variables may need "floating point" assignment. This often is the case for --STRESN (Numeric Result/Finding in
Standard Units), for which, when starting from a template, the value for "Length" is set to the default "8" and for
"SignificantDigits" is set to "2".
Remark here that the designation "SignificantDigits" may be confusing: it defines the number of characters after the
decimal point, and "Length" defines the total number of characters including the decimal point. Some examples:

Value define.xml "Length" define.xml "SignificantDigits"
3.14 4 2
997.23 6 2
0.1567 6 4
-0.1567 7 2

Another typical example where we may change want to change "DataType" and "Length" is "VISITNUM. For example,
when starting from the template, we find for SV (Subject Visits):

which can be seen as a "safe choice" for the possibility that there are "unscheduled" visits.
However, if we have no unscheduled visits, and the visit numbers can e.g. only be "1" to "5", we can edit the cells for
"DataType", "Length" and "SignificantDigits" to just:

Simple Viewing
One will surely already have observed that in most of the tables, the first 2 columns contain "clickable" symbols, i.e.:

Symbol Meaning
Edit sub-information

View sub-information

Let us start with the clickable symbol "View sub-information".
When we click it for the Variable Definition for "DM.SEX", a new read-only dialog is displayed:

and when scrolling down:

showing us that there is a codelist with the name "Sex" and OID "CL.C66731" is associated with the variable "SEX",
and that no "Origin" has been assigned, and that there is no "ValueList" assigned.

If we do the same e.g. for "LBORRES" (Results of Findings in Original Units), we also see that the "Origin" has not
been assigned.

Although not formally mandatory, in many cases, we will often want to generate a "ValueList" for LBORRES, as the
properties of LBORRES may depend on the value of LBTESTCD. For example, for some tests, such as for
concentrations, we will have a numeric value, whereas for others, the value will just be text, or text that is enumerated,
such as "POSITIVE" and "NEGATIVE". This will e.g. be often the case for urine tests.

Editing sub-information
But how can we now edit this sub-information, e.g. assign the "Origin"?
This becomes possible by clicking the "+" button . For example, for LBORRES, this opens a new dialog with the
following table:

It has a number of tabs: "Description", "CodeList Reference", "Alias", "Origin", and "ValueList Reference".
In the case of SDTM or SEND, one will usually not want to change the "Description", as this is essentially the "variable
label". In the case of ADaM, this may be information that one needs to add, or wants to change.
Now, suppose that we also want to add a "Description" in another language than English, e.g. Japanese.
We then first click the "Add new Language" button, leading to:

and then click "Japanese", leading to:

which shows us that the language code for "Japanese" is "ja".
Remark that if we want to have a language selected that is not one on one of the buttons or in the dropdown, we will
need to use the checkbox "Other", and add the two-character code ourself.

Clicking "OK" leads to:

We can now add the Japanese description by clicking in the empty cell on the right side for "ja", leading to a dialog:

in which we can add our Japanese description, like:

Remark this is essentially a multiline editor. For a variable label, one will usually only have one line, but we will later
also see cases where we want to add more than one line, e.g. for methods in the case of ADaM, where we e.g. want to
add R- or SAS-code.

After clicking "OK", we get:

P.S. Currently, there is no obligation at all, also not for the PMDA (Japanese regulatory authorities) to have labels in the
Japanese language. Reason is probably that we still need to submit datasets in outdated SAS-XPT format, which does
not support non-ASCII (such as Japanese) characters, and the label in the define.xml must correspond to the label in the
SAS-XPT. This may change once regulatory authorities start accepting submissions using the modern CDISC Dataset-
JSON format. For information exchange between different departments in different countries of sponsors, having
information in different languages may make sense.

When then clicking "OK" until we are in the main table, and then clicking the "View sub-information" icon then
leads to:

https://www.cdisc.org/standards/data-exchange/dataset-json
https://www.cdisc.org/standards/data-exchange/dataset-json

We will often see that editing sub-information uses "wizards" or very user-friendly dialogs. If one does not want to use
such wizards and "smart" dialogs, one can switch their use off by the menu "Options - Setting" by selecting one of the
checkboxes:

There are however only very few users who want to do this …

Adding / Editing Origin/Source information
One of the important pieces of information in the define.xml, whether it is for SDTM, SEND or ADaM, is the "Origin"
information. In Define-XML 2.0, only "Origin" is used, whereas in Define-XML 2.1, it is extended with "Source.

Let us take the "LBORRES" example which we demonstrate for Define-XML 2.1. After clicking the "Edit sub-
information" icon from the main table of "Variable Definitions" for LBORRES, and then selecting the "Origin" tab,
we get:

Remark that the Define-XML specification allows for multiple origins, but this will seldom be the case for SDTM and
SEND. The better way of dealing with multiple origins is to use ValueLists anyway. For example, for LBORRES one
can have that some lab data was collected on the CRF, and others were obtained from a lab (Source=Vendor).
Let us suppose, that we want to add the information that the lab data were obtained from the CRF.
When we first click "Type", the wizard shows up:

The wizard knows about the allowed combinations (see section 4.3.2 of the Define-XML 2.1 specification). For
example, when selecting the radiobutton "Assigned", the other choices reduce to:

But let us add some information for the case the lab original results were collected by the investigator from the CRF.
We can then add some information, such as:

P.S. We will later see how the "LF.aCRF", i.e. the document to the annotated CRF can be added.

If your annotated CRF is not final yet (which is typical the case when we develop the define.xml before the study starts,
as a "specification" of what we later want to submit), one can select "No page details", and add the information later.

Clicking "OK" and using the "View sub-information" icon, we get:

and when clicking the "HTML View" button (which takes more time), and looking for LBORRES, we see:

Adding / Editing "Dataset Structure" and other dataset
properties
Similarly, we can of course also edit information regarding the datasets. In the define.xml, dataset definitions are
represented by the "ItemGroupDef" XML element.
When we use the tab "Dataset Definitions", we e.g. find:

If we already know which domains will really be used, and which not, we can already delete some rows, by selecting a
cell in that row, and then use the "Delete selected row" button, which we find in the lower part:

If we delete a row by accident, no panic, we can always revert to an earlier version of our define.xml (see the section
"Autosaving", or add a new row, but will then need to add the information like the variables to be used. It is also
possible to "merge" define.xml-s. (using the menu "File - Add/Merge define.xml"). Also this will be explained later.

One of the things one always needs to do is to check the column "Structure". Reason is that what is provided by the
template is just a first proposal, something that is not always well understood by people who generate the datasets.

For example, for LB, the suggestion is "One record per lab test per time point per visit per subject", but if we do not
have any time points within visit, i.e. that only one measurement per test within a visit is made. By clicking the cell, we
can easily change this from:

in e.g.:

It is important that this is just text to give the reviewer a clue how the data within the dataset is organized, I.e. it doesn't
impose anything. The "real structure", in a machine readable format is however provided by the "keys", which are
provided at the "ItemRef" level, i.e. the XML elements that define which variables are used within each dataset.
To add this information, we thus need to go into the sub-information, by clicking the "Edit sub-information" icon,
and then selecting the "Variable References" tab:

This is also the table where one will add or remove variables for each of the domains.
Let us however first assign the "keys" defining record uniqueness (as in a relational database, though SDTM surely isn't
one). This is done in the "KeySequence" column.
As we don't have time points for lab tests in our study, the logical key (sequence) for record uniqueness is:
STUDYID, USUBJID, VISITNUM (or VISIT), LBTESTCD.
"Locally", "STUDYID" is essentially not necessary, as it is fixed, but it is essential anyway for the use case that the
metadata of different studies is merged. So, just by clicking cells, and adding an integer number (other characters will
be refused anyway), we can e.g. come to:

https://cdiscguru.blogspot.com/2012/07/is-sdtm-database-design-and-if-so-is-it.html
https://cdiscguru.blogspot.com/2012/07/is-sdtm-database-design-and-if-so-is-it.html

All fine? To check, we can use the "Validate" button (near the bottom, on the right). When it is clicked, we get:

as KeySequence numbers must be unique within the list of ItemRef elements:

Some other attributes that we can change, but that is often done later in the course of the project, are "IsNonStandard"
and "HasNoData". The latter is used to define that an empty dataset is being submitted. For example, after database
closure it is found that no a single adverse event has been reported, one can set "HasNoData" to "Yes":

One can always reset it to "null" (i.e. it will be removed in the define.xml) by doing the selection as:

When we now click the "View sub-information" icon for the LB dataset definition, we e.g. get:

and, when scrolling down:

Adding and removing dataset definitions
Adding and removing dataset definitions will usually not be done when starting from a set of SAS-XPT datasets.
It is however very important when using the define.xml as the definition of the deliverables of the submission, whether
it is about SDTM, SEND or ADaM. For example, the sponsor can set up a define.xml for an external vendor (or one
department for another department within the sponsor) as a specification of which datasets need to be generated and
what variables each dataset contain. This can then even be a "partial" define.xml, as one will e.g. not know the maximal
length of each variable in advance.
Whereas for SDTM and SEND, the names of the datasets and their content is strongly defined by the SDTM and
SEND Implementation Guides (IGs), this is much less the case for ADaM, where this will mostly defined by what is in
the Statistical Analysis Plan (SAP), instead there are a lot of "naming conventions" for the datasets and variables in
ADaM.

We will here show how dataset definitions can be added and removed for the case of SDTM, starting from the template.
The same principles however also apply to SEND and ADaM.

We select the tab "Dataset Definitions":

From our study design (and possible the (a)CRFs) we deduce that we will e.g. not need the following domains:

SM (Subject Disease Milestones), AG (Procedure Agents), ML (Meal Data), BE (Biospecimen Events), CP (Cell
Phenotype Findings), CV (Cardiovascular System Findings), DA (Product Accountability), FT (Functional Tests), GF
(Genomic Findings), IS (Immunogenicity Specimen Assessments), MB (Microbiology Specimen), MI (Microbiology
Findings), MK (Musculoskeletal System Findings), MS (Microbiology Susceptibility), NV (Nervous System Findings),
OE (Ophthalmic Examinations), RE (Respiratory System Findings), RP (Reproductive System Findings), SS (Subject
Status), RS (Disease Response and Clin Classification), TR (Tumor/Lesion Results) and TU (Tumor/Lesion
Identification) as this is not a cancer study. Furthermore, we do not need UR (Urinary System Findings), SR (Skin
Response). We also keep all "Trial Design" dataset definitions for now except for TD (Trial Disease Assessments), TM
(Trial Disease Milestones), OI (Non-host Organism Identifiers) which we will remove.

We keep DD (Death Details) as we cannot know in advance whether our study may have subjects dying during the
study period. If none, we can always still remove it later. Similar applies to IE (Inclusion/Exclusion Criteria Not Met).
For QS (Questionnaires) we will need to "split" as we have several questionnaires, and it is custom to have one QSxx
dataset per type of questionnaire. For FA (Findings About), we just keep it for now, we may want to have several
instances later, like "FAMH" (Findings About Medical History), "FAAE" (Findings About Adverse Events). Normally
this should however be clear from the (annotated) CRF.

Deciding for which domains we will have dataset definitions in our define.xml is of course a crucial step, based on
information from the aCRF (when already available) and/or the protocol. In many cases, the user's company will
maintain libraries for this, which we can import into our define.xml (see section "Using own Libraries").
If one deletes a dataset definition by accident - no panic, we will later see how one can either return to a prior state of
the development of the define.xml, or to merge with already existing define.xml-s.

To remove a dataset definition from the define.xml, select a cell of the dataset definition to be removed, e.g. SM (one
from the list of dataset definitions we want to remove):

and the click the "Delete Selected Row" button which is near the bottom of the window:

resulting in the "SM" row being removed:

One can now repeat the process for all other dataset definitions to be removed. In our case, this leads to:

For QS, we will "split" into 2 dataset definitions, as we have two questionnaires, e.g. QSPH (PATIENT HEALTH
QUESTIONNAIRE-9 - PHQ-9) and QSSL (SATISFACTION WITH LIFE SURVEY - SWLS).
In order to do so, select a cell in the QS row, and click the "Copy Selected Row" button:

A question dialog is displayed:

which we fill with:

which is followed by another dialog:

In most cases one will select the first option …
Clicking "OK" leads to:

and which we can now start editing: we want as well different OIDs (first column) as well as separate dataset names
(second column) as also for the "SASDatasetName". Just clicking in the cell and editing e.g. leads then to:

Important remark: We should not change the value for "Domain", as both dataset definitions still share the same
Domain name. We still must adapt the "Label", which in the define.xml is covered by the "Description" element. For
QSPH, by clicking on the "Edit sub-information", we change the existing value of "Questionnaires" into e.g.:

and similar for QSSL into "Satisfaction with Life Questionnaire".
Remark that due to the current restrictions of SAS-XPT, the "label" may not be more than 40 characters. This rule will
probably be relaxed in future when datasets in modern CDISC Dataset-JSON format becomes become accepted by the
regulatory authorities (the sooner the better …).

When going back to the main window and clicking the "HTML View" button, and navigating to the questionnaires
dataset definitions, we find:

where we see that this will need further refinement for the "Structure" (which may be different between both) and
especially the "Location" showing the XPT file name. The latter can easily be changed by clicking the "Edit sub-
information" icon, navigating to the "Document links" tab:

and editing the information into:

and similar for QSSL …
Updating the "HTML View" then e.g. leads to:

Adding dataset definitions (domains) from another template
In some cases, one wants to also include dataset definitions (i.e. "domains") from other versions of the standard, such as
the "Medical Devices" (MD) standard for which there is a separate template available. Let us suppose the user wants to
first set up the definitions for the MD domains, and after that, add definitions from SDTMIG-3.4 (remark that the other
way around is of course also possible). So, when starting, the user selects:

Not a bad idea to also already load a version of the CDISC Controlled Terminology.
This leads to:

i.e. 7 definitions for DI (Device Identifiers), DU (Device In-Use), DX (Device Exposure), DE (Device Events), DT
(Device Tracking and Disposition), DR (Device-Subject Relationships) and DO (Device Properties), including the
variable definitions under the "Variable Definitions" tab.

After having worked on these definitions, the user then wants e.g. to add the DM (Demographics) domain from version
3.4 of the SDTM-IG. To do so, use the menu "Add - Dataset Definition from Template":

which then displays a file chooser from which the template for the chosen standard version can be selected6, e.g.:

When then clicking "Open", the user is invited to select the domain from the selected template he/she wants to have the
dataset definition added. For example:

Remark that at this moment, only one dataset definition can be loaded at the time.
After selecting the wanted one, and clicking "OK", this leads to a message:

6 The file chooser automatically opens in the folder where all templates are stored.

and when then looking into the "Dataset Definitions" tab, we find:

and in the "Variable Definitions" tab:

Also remark that when using Define-XML 2.1, the system takes care that the correct standard and version is assigned to
each of the dataset definitions:

and in the "Standards" tab, we find:

Remark that some adaptions may still be necessary, so it is not a bad idea to check the results of the additions.
The same procedure can then be followed for adding other domains from the same of other templates.

Using Autosave
As already mentioned, when something goes wrong, one can always revert to an earlier version of the define.xml that
was automatically saved. These "backup" define.xml are stored in the folder "autosave". For example:

Such a "backup" define.xml is generated each 30 minutes, and can be loaded using the menu "File - Open define.xml".
The interval between such "autosaves" can be changed using the menu "Options - Settings" and changing the value in
the field "Number of minutes between define.xml autosave":

During each session, also a log file is generated and stored in the directory "logs", e.g.

The amount of logging can be set in the file "properties.dat". The allowed log-levels are "INFO" and "DEBUG":

In this file, also the default value for the number of minutes between "autosaving" can be set, as well as the file path to
which the log files are to be generated. Remark that lines starting with a "#" are "commented out" lines, and are ignored
at startup

Adding to / Editing the list of variables for each dataset
definition
Once we have decided which dataset definitions we want to have or retain, we should have a look at which variables we
want to use in each of these definitions. Especially in SDTM and SEND, we need to take into account that some of the
variables are "Required" (meaning the variable must be present and a value must always be present), "Expected"
(meaning the variable must always be present, but there may be empty values" and "Permissible" (meaning that if no
data is available for the variable, the column in the dataset may be omitted).
Furthermore, it is advisable to keep the order of the variables as provided in the corresponding Implementation Guide.
It may sometimes also be necessary to add additional variables from the (SDTM) "Model", which are not mentioned in
the IG for that domain. This is often the case for "Timing" variables.

Let us take the LB (Laboratory) dataset definition as an example again. When using the tab "Dataset Definitions"

and then clicking the "Edit sub-information" , and selecting the "Variable References" tab, we get the list of the

variables for this dataset definition, e.g. when coming from the template:

The column "Mandatory" is very important! For each variable, when the value is "Yes", this corresponds to either
"Required" or "Expected" in the IG. So, when an standard-compliant dataset is envisaged, such variables should NOT
be removed from the list! Variables with Mandatory=No can be removed when one is sure there is no data for it.

Suppose that for our submission, we do not need LBGRPID (Group ID), LBREFID (Specimen ID), and LBSPID
(Sponsor-defined Identifier), but we do want to add LBSTDTC (Start Date/Time of Observation) and LBENDTC (End
Date/Time of Observation) as we e.g. have tests that span over an amount of time, such as for Urine collected over a
period of 24 hours. For such, we may also want to add LBDUR (Duration - defined as "Collected duration of an event,
intervention, or finding").
As we do not have time points for the lab tests (i.e. we only can have one set of lab tests per visit), we will also remove
LBTPT (Planned Time Point Name), LBTPTNUM (Planned Time Point Number), LBELTM (Planned Elapsed Time
from Time Point Ref), LBTPTREF (Time Point Reference), LBRFTDTC (Date/Time of Reference Time Point). We
however want to keep LBPTFL (Point in Time Flag) and LBPDUR (Planned Duration) to distinguish between tests for
which is there is a time span of collection, and tests that are just "single point in time".

For the variables to be removed, we can just select any cell for each of them, and then use the button "Delete Selected
Rows". This will lead to:

Remark that we have "gaps" in the "OrderNumber", but that is not a problem, as there is no Define-XML that states that
the values should be subsequent numbers.

We do however also want to add LBSTDTC (Start Date/Time of Observation), LBENDTC (End Date/Time of
Observation) and LBDUR (Duration). Question is of course where they should exactly come …

To know this, we need to look in the "SDTM Model", which is nicely available online through the "CDISC Library
Browser". We there select SDTMIG-3.4 and see that it is based on the "SDTM Model" version 2.0:

https://library.cdisc.org/browser/
https://library.cdisc.org/browser/

As we want to add variables for LB that are not in the IG, we need to look into the "Model" to get information about
them, including the correct order, so we click on "SDTM v.2.0", leading to:

The timing variables we want to insert (LBSTDTC, LBENDTC, LBDUR) fall under "General Observations", and when
scrolling down, we easily find them as "--STDTC", "--ENDTC" and "--DUR", as the model is meant for all
"observation" domains:

where we see that LBSTDTC and LBENDTC must come immediately after LBDTC.
However, we must first just just define them under "Variable Definitions" before we can reference them from the
"Dataset definition" for LB7.
So we first select the tab "Variable Definitions", and click "Add Row" to add a new, empty row at the bottom:

and add the necessary information in this new, empty row. We add an OID (identifier), like "LB.LBSTDTC" and the
variable name "LBSTDTC":

7 In future we intend to automate this by getting the information from the CDISC Library API. This would however that
the user has a Library API key.

and set the "DataType" to "datetime":

For "datetime", no "Length" should be assigned due to the Define-XML specification. But we set it to e.g. "20" just to
see what happens... We also add "LBSTDTC" in the column "SASFieldName" as the Define-XML specification states
"Required in the context of a regulatory submission when the data is submitted as SAS XPT files.".
Are we done? When clicking the "Validate" button, the first cell gets colored yellow, and a message is shown:

stating that for DataType=datetime, Length should not be populated, and a child "Description" element must be
populated (this is the "Variable Label"). So we remove "20" from the "DataType" cell, and then click the "Edit sub-
information" icon to add the variable label / description:

The English description can then be added by clicking in the cell "TranslatedText":

But what do we need as the "variable label", as LBSTDTC is not mentioned at all in the SDTMIG?
In such a case, we need to take the "Model" (here SDTM v.2.0), which is (as found in the "CDISC Library Browser"):

So we can just copy-paste "Start Date/Time of Observation":

clicking "OK" twice, and then again clicking "Validate", the error messages (at least for LBSTDTC) disappear:

If we already know what the "source" of the LBSTDTC data points will be, we can add this information by clicking the
"Edit sub-information" icon again, selecting the "Origin" tab, leading to:

When clicking in the first "Type" cell, the "Source/Origin" wizard will pop up:

and if the start-datetime was collected in the CRF by the investigator, we can point to it, and provide the page numbers
when available, e.g.:

Clicking "OK several times lead to the main table.

We should then do the same for LBENDTC and LBDUR.

Editing variable properties

We have already seen how one can insert a new variable (e.g. from the SDTM "Model") and then "add" it (i.e.
"reference it") to the dataset definition (ItemGroupDef).
We can of course also edit the properties of already defined variables.
To do so, select the tab "Variable Definitions":

providing a list of all variable definitions currently available.
Also here, we can add or remove variable definitions using the "Add Row" and "Delete Selected Row" buttons neat the
bottom:

However, with "deleting" one must be careful, especially when it is about a "required" or "expected" variable.
Also, as we have a lot of variables, using the "Show Search Panel" may be very helpful to find a specific one:

E.g. when looking for "LBTESTCD":

and then clicking the "Search" button leads to the "LBTESTCD" row being selected:

However, LBTESTCD is a "required" variable, so when we then click the "Delete Selected Row", the system reacts
with:

suggesting us to first remove it from the dataset definition contents. But if we try that (using tab "Dataset Definitions"
and then clicking the "Edit" icon and select the "Variable References" tab), the system is asking whether we really want
to remove LBTESTCD:

Back now to LBTESTCD in the "Variable Definitions" tab:

We e.g. see that the "Length" has been set to "8", but if we already know that the LBTESTCD value will never be
longer than 6 characters, we can already change that.
In order to do that, just select the "Length" cell for LBTESTCD, and add the new length, e.g.:

As you can easily find out, you can only type in non-integer values.

There is also a column "Origin". When we select it, the following message appears:

Reason is that "Origin" as an attribute of "ItemDef" is deprecated in Define-XML 2.1, and we need to use the child
"def:Origin" child element instead.

In order to do so, click the "Edit" icon left to "LB.LBTESTCD", leading to:

where we also find a tab "Origin". When it is selected:

By default (we will later see how this can be switched off) when we then click in the "Type" cell of the first row, a
"wizard" is started.
In many cases, the system will show a "Wizard", guiding the user when the Define-XML standard for that piece of
information is a bit more complicated. For example, for "def:Origin" in Define-XML 2.1, there are dependencies
between "Origin Type" and "Source". See section 4.3.2 "Origin/Source/Traceability Considerations" of the Define-
XML 2.1 specification.

So when the first "Type" cell is clicked, the "wizard" is started:

For SDTM, the wizard sets the default combination to Origin-Type="Collected" and Source-type="Investigator". In
most cases however (but now always), the "test code" will be assigned by a mapper. So when we select "Assigned", the
available choices change into:

and the choice "Sponsor" is suggested.
The other possible choice is "Vendor", to be used when an external vendor did the assignment.
Also notice that the whole section about page numbers is automatically disabled.

Subsetting CodeLists
The CDISC Controlled Terminology has some very long codelists, especially for --TESTCD and --TEST variables, but
also e.g. for specimens (SPECTYPE codelist - C78734) and for units (UNIT codelist - C71620).
In case one has generated the prototype define.xml starting from a set of SAS-XPT files, and the checkbox "Try to
create subset CodeLists from XPT content ..." was checked, such subset codelists should already have been created, at
least for the entries in the "subsetcodelistvariables.dat" file, and one will probably only want to extend them, or
designate which of the items in such codelists are "extended".
For example, the LBTESTCD codelist contains almost 2500 items8, and one surely do not wants to submit a define.xml
with all these 2500 terms. Normally, if one has generated the mappings with "SDTM-savvy" user-friendly software
such as the SDTM-ETL software, the "cleaned" define.xml will already have taken care, but we see that still often
(statistical) software is used to generate SDTM datasets, without generating a synchronized define.xml at the same time.
In such a case, one should have look into the annotated CRF and look which values of LBTESTCD have been used in
the annotations. If one already has an, even temporary, LB XPT dataset, one can also generate subset codelist from that
XPT file.

8 The exact number for codelist version 2025-09-26 is 2474.

https://www.xml4pharma.com/SDTM-ETL/

In order to subset a codelist like the one for LBTESTCD, use the menu "Extra":

We have 2 features here to generate a codelist subset.
Let us start with the "Generate CodeList Subset". When we select it, this leads to a dialog where we can select for
which codelist we want to generate a subset:

Using the "Search", we can quickly find the one for LBTESTCD:

and clicking "OK" leads to:

We can then compare this list with the annotations on the CRF9 and check the checkboxes for the codes that we want to
have in the subset. For example:

9 We are currently working on a feature to automatically retrieve the LBTESTCD annotations from the Annotated CRF
in PDF form.

There is no problem if one forgets one or makes an error, as the list can always be corrected later.

As this moment, it is also wise to check the checkbox "Also automatically subset the corresponding 'decode' CodeList

as this will take care that the corresponding codelist for LBTEST (test name) is generated.

When all found and checked, clicking OK then e.g. leads to:

allowing the OID of the subset codelist and its name to be changed, if desired.
Clicking "OK" then leads to:

If after that, one scrolls to the bottom of the list with codelists, one finds that 2 "subset" codelists have been added:

and if we click on the "View" (magnifying glass) icon for the first one, we e.g. get:

and for the LBTEST-subset:

If we did something wrong or forgot something, we can still edit the list by clicking the "Edit" icon, and then make
corrections.

If we already have an XPT dataset for LB, we can also retrieve the subset values from that. In order to do so, we need to
use the menu "Extra - Generate CodeList subset starting from SAS-XPT":

It is then asked for which codelist we want to generate a subset:

and provide a SAS-XPT file by using the button "Browse…", e.g. leading to:

and after "OK", we get the proposed list:

If necessary, we can then still make corrections, or decide to not have some items included in the subset codelist. If
something is missing, we can even add it now. For example, if "Blood Group" was planned to be collected, but there is
no data for it in the SAS-XPT file, we can still add it by checking the checkbox for it:

Clicking "OK" then leads to the sub-codelist to be generated, and it is asked whether we want to have this generated
subset codelist to be assigned already to the variable LBTESTCD:

Again, an information message is being shown, and the codelist is added to the list:

We can then do the same for LBTEST, again using the menu "Extra - Generate CodeList subset starting from SAS-
XPT", e.g. leading to:

and ultimately to having the LBTEST subset-codelist being generated and added to the list, and being assigned to
LBTEST:

We can visualize the result by clicking the button "HTML View", and scroll down LBTESTCD:

and then e.g. clicking the link "Laboratory Test Code", it displays the codelist we have just generated:

Please do not worry about that the original codelist with the almost 2500 items is still in our define.xml. We will later
automatically have it removed when generating a "cleaned" define.xml.

Generating Single-Item Subset CodeLists
In some cases, one has created a (subset) codelist and wants to further create several subset codelists containing one
item each. This can e.g. be the case when one wants to make a ValueList to state which unit was used for which test
(xxSTRESU or xxORRESU for SDTM/SEND as function of xxTESTCD, or AVALU as function of PARAMCD). In
SDTM/SEND one will however mostly use it on already existing subset codelists.

In order to generate a set of subset codelists from another (usually subset) codelist, use the menu "Extra - Split".

For example, if one would create subset codelists for each individual item of the "AGEU" (Age Units) codelist one
starts with the menu "Extra - Split (subset) CodeList into single-item CodeLists":

The system then asks us which codelist should be used as the base for splitting:

Clicking OK starts the process, with the final message:

and if we then look at the list with codelists, we find:

and then click on the "View" (magnifying glass) icon e.g. for "CL.C66781.AGEU.HOURS":

Please notice that the existing "AGEU" codelist is still present.
We can then use these single-item codelists for a ValueList stating which age unit for which case (e.g. based on
birthdate) was used.

Generating ValueLists
ValueLists can be set up in several different ways:

- by first defining define.xml "WhereClauses" using the "WhereClause Definitions" tab, and then defining "ValueLists"
using the "ValueList Definitions" tab, and for each added "ValueList", adding a "WhereClause".

- When starting from a set of SAS-XPT files, reading "WhereClauses" from a file "valuelistvariables.dat" and having
them executed during generation of the define.xml from the XPT files.
In order to use this, one should have the checkbox "Try to create ValueLists from definitions in a 'valuelistvariables.dat
file" checked:

The "valuelistvariables.dat" file contains "WhereClause" definitions in a "human-friendly" format. For example:

Lines in this file starting with a "#" are "commented out" and will be ignored.
Also have a look at the checkbox "Try to create ValueLists for Supplemental Qualifier datasets from XPT content".
Having such may be a requirement of some regulatory authorities such as the FDA. An example is provided in Section
4.5.2.3 of the Define-XML specification. The specification states in Section 5.3.9:
"Business Rule: For SDTM SUPPQUAL datasets, a def:ValueListDef element must be provided to describe the QVAL
variable".

ValueLists for Supplemental Qualifiers (SDTM)
When the checkbox "Try to create ValueLists for Supplemental Qualifier datasets from XPT content" is checked, we
will find automatically generated entries such as:

and for the ValueLists:

When using the "HTML View" button, we e.g. find:

stating that there is a valuelist for QNAM=RACE3. When clicking the hyperlink "CodeList for QVAL for QNAM =
RACE3", we get:

of course, this doesn't make sense, so we will better delete such valuelists with their where-clauses.

There is another however, also a ValueList for ECREASOC

stating that a codelist was automatically generated, so when we click the hyperlink:

showing there is only "investigator" decision.
It then is wise to have a look at the CRF: when the field for "Reason Occurrence" is free text, we surely should no have
a codelist nor valuelist for it, and we should remove the codelist reference and the codelist definition itself from the
define.xml. This can easily be done by going to the item definition in the "Variable Definitions" tab, select the one,
click the "Edit" icon, and then remove the codelist reference, i.e.:

Later we will see that there is an easier way by starting from the HTML view itself.

The ValueList for QVAL for QNAM=ECREASOC then will still be present, as required, but the codelist referecence
and the codelist itself have been removed:

IF, however, the field on the CRF is not free text, but has more choices than "Investigator Decision", like "Adverse
Event", but the latter was never used and thus didn't make it into the XPT dataset, then we need to add these extra
choices to the codelist. For example, if the codelist needs to be extended with:

This demonstrates once again how dangerous it can be to generate a define.xml starting from the SDTM/SEND/ADaM
XPT datasets! Define-XML is about what was planned, and not only about what was collected!

ValueLists for other variables from SAS-XPT files

SDTM Example

When the checkbox "Try to create ValueLists from definitions in a 'valuelistvariables.dat file" was checked and a list of
"whereclause statements" is provided in the file "valuelistvariables.dat", then also other ValueLists will be created.

For example:

and for the "where-clauses":

where we see that for LBORRES dependent on LBTESTCD, we have 111 (!) where-clauses. So very probably, we have
some "overkill" there …

Let us first have a look at the valuelist generated for VSPOS in the HTML View:

and when clicking the hyperlink for "Position":

showing us the complete codelist for "Position".
When however also the checkbox "Try to create subset CodeLists from XPT content and selected Controlled
Terminology from 'subsetcodelistvariables.dat' file" has been checked, the subset codelist is referenced:

with the subset CodeList being:

as only "STANDING" and "SUPINE" appeared in the dataset. It may however also be that e.g. "LATERAL
DECUBITUS" was on the CRF, but never selected, and so did not appear in the XPT file, then it must still be added to
the subset codelist, as the define.xml is about "planned"! This shows again how dangerous generating the define.xml
solely from the set of XPT files can be.
Also notice the ValueList text in the second column, essentially stating that VSPOS is only populated when
VSTESTCD is either "SYSBP" or "DIABP".

We also found that 4 ValueLists were generated for LBORRES with the dependency on LBTESTCD:

in which we see that the properties (as dependent on LBTESTCD) are the same for "CA" (calcium), "CREAT"
(Creatinine) and "PHOS" (Phosphate) are identical. So it may be a good idea to "group" these. We can of course do this
in the editor (see next section), but when we can know this in advance, we can also have the following entry in the
"valuelistvariables.dat":

and the result then (in the "HTML View") then is:

Using automated generation of ValueLists from XPT files cannot only easily lead to "overkill", but will often also lead
to incomplete information, as demonstrated before for the cases of VSPOS, ECREASOC, when choices on the CRF
were never used and thus are not present in the data files.
Careful design of the entries in the "valuelistvariables.dat" file can take care that ValueLists are only generated for the
cases where it make sense, but it cannot ensure completeness or correctness of the codelists generated for the
ValueLists.

Therefore, it is always much better to already start designing the define.xml once the CRFs are final, even before the
study start, and even when the define.xml will not always contain all the necessary information, such as the maximal
lengths of variables. However, such define.xml files can already be complete for over 90%.
This also means that once the submission is prepared, the amount of work for getting the "perfect" define.xml will be
minimal, whereas when starting from XPT files, getting to the "perfect" may lead to days or even weeks of corrections,
improvements etc.. It is clear that this will be costly both in terms of time and money.

ADaM example

Let us have a look at an ADaM example: we have an XPT file ADPP.xpt (Pharmacokinetic Parameters Analysis
Dataset). Typically for ADaM, this has PARAMCD, AVAL and AVALU columns. The AVAL column only contains
numeric values, so it doesn't make much sense to generate a ValueList for it. When we however sort the XPT dataset by
AVALU values, we find:

We see e.g. that for the unit "h", PARAMCD can have the values "HALF" and "TMAX", and that for the unit "L",
PARAMCD can only have the value "VSS".

We can easily put this information in our file "valuelistvariables.dat":

where we also define some "groupings" on which we want to generate ValueLists.

When the XPT file is then loaded, and one then selects the "ValueList Definitions" tab, one observes that one ValueList
has been generated with 5 items:

and when one selects the "WhereClause Definitions", one finds:

Using the "HTML View" allows us to see the results in a "human-friendly" view:

Notice the items where the "where" has the grouping as we defined it in the "valuelistvariables.dat" file.

And when then clicking e.g. the first codelist link:

so the ValueList statement essentially is "When PARAMCD is either "HALF" or "TMAX", then the unit in AVALU is
"h".

Generating ValueLists starting from (subset) CodeLists and the
CRF
The best way to generate ValueLists when starting from a study design and/or CRF (annotated when possible) is to first
set up a set of codelists. For SDTM/SEND "Findings" these will typically based on --TESTCD (test code), whereas for
ADaM, these will typically be based on PARAMCD (parameter code).

ValueLists for SDTM and SEND - a simple example

As a simple example, we take the case that vital signs measurements are collected. Assume the following
measurements:
- systolic and diastolic blood pressure, with as unit mmHg (millimeter mercury column)
- height, either measured in cm (centimeters) or inches
- weight, either measured in kg (kilograms) or pounds
- frame size: with the possible values: small, medium and large
- heart rate, measured in beats per minute

We will start by subsetting the codelist for VSTESTCD and VSTEST to contain exactly these tests.

For this, we use the menu "Extra - Generate CodeList Subset":

and then looking and selecting the codelist for "Vital Signs Test Code":

After clicking OK, leading to:

and then adding the different items we need, helped by the "Search" function:

so that we quickly come to our 6 tests

At this moment, it is also wise to check the checkbox "Also automatically subset the corresponding 'decode' CodeList",
which in this case is the CodeList for VSTEST. This not only saves time, but also ensure that both codelists are
synchronized. After clicking "OK", we can still change the OID (identifier) and the name of the codelist, but this is
usually not necessary:

leading to the message:

We can now also assign these codelists to VSTESTCD and VSTEST respectively, by selecting them one by one in the
tab "Variable Definitions", click the "Edit" icon, select the "CodeListRef" tab, and then drag-and-drop them to the field.
For example for VSTESTCD:

Another way is to click in the field, and the list with all available codelists is displayed, from which one can select just
by a click:

The result is just the same:

If one makes an error, one can delete the value in the cell by either using the "Delete Selected Row", or right-click, and
then confirm that one wants to delete the item:

We also want to generate a subset codelist for VSORRESU, only containing the units really intended to be used, i.e.
"mmHg", "cm", "in" (inches), "kg", "LB" (pounds) and "beats/min". This is easily done in the same way as for the
VSTESTCD subset codelist. We then assign that subset codelist to VSORRESU.

Once we have created the subset codelists for VSTESTCD and VSTEST and have assigned them to VSTESTCD and
VSTEST respectively, we are going to develop or subset some other codelists that we may need to the ValueList items.

For "diastolic blood pressure" and "systolic blood pressure", we only allow the unit "mmHg", so we make a subset
codelist for it from the VSRESU codelist only containing "mmHg":

but then give it a better OID and Name:

For "Weight", we generate a subset codelist only containing "kg" and "pounds" (for which the CDISC symbol is "LB"),
and give the codelist a better OID and Name, e.g.:

For "Height" we generate a subset codelist only containing "cm" and "inches" (CDISC symbol "in"), and for "Heart
rate" a subset codelist with only "beats/min". For each, we provide a unique OID and a suitable name.
If we then look into the list with codelists (tab CodeList Definitions), we find:

What about "Frame Size"?
A quick search in the list of codelists reveals that there is already a codelist that exactly is what we need: the "SIZE"
codelist:

OK, we now have the codelists that we need to start generating the ValueList.

We start the process by using the menu "Transform - CodeList to ValueList":

and select the "Vital Signs Test Code Subset", as that is the one we want to start from, I.e. we want to generate a
ValueList that is dependent on the value of VSTESTCD for which we have developed a subset codelist:

This leads to another dialog:

Very often, we will want to have the "WhereClause" being generated automatically (we can change everything in that
later), so we do check that checkbox. After "OK", a table is generated:

What do we want to use this ValueList for? In first instance, we want to have one explaining the properties for
VSORRES depending on the value for VSTESTCD.
We will probably also want one describing the properties of VSORRESU depending on the value of VSTESTCD.

Let us start with the one describing the properties of VSORRES depending on VSTESTCD. So we assign a new valie
for the OID, e.g.:

Remark that in Define-XML, ValueLists do not have a "Name", only an "OID". We can however add a "Description"
later.

We can now start setting the properties. For example, for the blood pressures, we expect that the value is an integer with
a maximum character length of 3. For "Height" and "Weight" we may expect a floating point number with one character
after the decimal point, for hearth rate, we again expect an integer with a maximum character length of 3. For "Frame
Size" we will use the codelist, having "SMALL", "MEDIUM", "LARGE", so this is text with a maximum of 6
characters. So we start filling:

leading to e.g.:

We can always click the "Validate" button to check whether what we are doing is correct. For example, if we do not add
a value for "Significant Digits" when the "Data Type" is "float", clicking "Validate" leads to the "Sign.Di," cell to be
colored red:

IMAGE TO DO: something is still wrong here

We can also provide the "Origin" by clicking in the "Origin" cell, and a dialog shows up:

However, we will usually assign the Origin/Source on the variable level, not at the ValueList level.
A case where we want to assign it at the ValueList level is e.g. when some of the lab date comes from an external lab by
electronic transfer (Origin Type = Collected, Source Type = Vendor) and some of the lab data comes from the CRF
(Origin Type = Collected, Source Type = Investigator). We will go into more details in the section "Assigning Origin
Information".

For "Frame Size", we need to state that there is a codelist, so we click the cell "CodeList":

leading to a list with codelists:

We can use the "Search" button to find our "SIZE" codelist:

leading to the selection:

and after "OK" we find:

As we checked the checkbox, the "WhereClause"s (last column) were automatically created, let's have a look anyway.
and click on the one for DIABP (WC.IT.DIABP). This then shows the wizard:

We can add a comment (this will lead to a def:Comment in the define.xml). Clicking the "Show 'Where' clause" shows
the "human-readable" expression of it:

We could add additional "RangeChecks", but this will only be necessary when we need a combination of "checks". For
example, we could add one for "pounds" stating "where VSTESTCD EQ 'WEIGHT' and DM.COUNTRY EQ 'USA'".
This will however often be "overkill".

What we could do, is to combine the properties for DIABP and SYSBP. We could then use:

by typing "DIABP" in the field "Add to or remove from list" click "Add to list" and then do the same for "SYSBP".
Clicking the "Show 'Where' clause" button then leads to:

Often, this will however also be "overkill" …

To show the "human-readable expressions, we do not necessarily go into clicking the "WhereClause" cell, we can also
simply hoover the mouse over it, e.g.:

When all done, a message is displayed containing a summary:

followed by a proposal to which variable the ValueList must be added:

VSORRES is the one we indeed need, so we accept that.

One then finds the newly created valuelist in the "ValueLists" tab and the newly created "WhereClause"s in the
"WhereClause Definitions" tab:

We can now also inspect the result in the "HTML View":

Another ValueList we may want to set up is for the unit used for the measurement which goes into VSORRESU.

For this, we start from our VSRESU-subset codelist:

Leading to:

but essentially, this is not what we want: we want to state which of the values is used for which of the test codes, i.e.
"LB" and "kg" for "WEIGHT", "cm" and "in" for "HEIGHT" etc.. So it is a question whether it really is a good idea to
start from a codelist here.
We can however still start from here, and simplify e.g. to:

describing that e.g. "blood pressure units" are of type text with a maximum length of 4.
But that is of course not sufficient. We also need to e.g. add which units may be used for "weight units". We did already
develop subset codelists for these, so we can add these now. So, for e.g. "Blood pressure units", we click the "CodeList"
cell and select the codelist for "blood pressure units", which only contains "mmHg":

and when doing the same for "Height Units", "Weight Units" and "Heart Rate Units" leading to:

When validating however, we still see that we still need to develop the "Where Clauses". Clicking the one
"WC.IT.DIABP", leads to:

I.e. containing no information at all …
As "WC.IT.DIABP" is not well describing what this is about, we change it into WC.IT.BLOOD_PRESSURE
(unfortunately WhereClause elements do not have a "Name" attribute, nor have a "Description" child element), and than
add the cases under which one of the "blood pressure units", i.e. only "mmHg" will be used, which is
VSTESTCD=DIABP or VSTESTCD=SYSBP:

and when using the "Show 'Where' clause" button, we get:

We then follow the same procedure for "Weight Units", "Height Units", and "Heart Rate Units".
When all is OK (good idea to each time click the "Validate" button), and everything is done, clicking "OK" first shows
us a message with an overview, and then asks us to which variable we want assign this newly created ValueList, where
we of course select VSORRESU:

When then doing an "HTML View", we find:

A few remarks:
- We did not use "frame size" here, as frame size has no units.
- Generating ValueLists for xxORRESU (Original Units) is a matter of taste and choice. There is no formal obligation
to do so. As we have seen, it is a bit more complicated than generating ValueLists for xxORRES variables. The latter
are mostly very helpful for the reviewers. When developing a "high quality" define.xml, one should always ask oneself:
"do I do the reviewer a pleasure adding this ValueList or not?" and "does it help the reviewer better understanding the
datasets?".

ValueLists for ADaM - a simple example
It can also be useful to develop generate ValueLists for ADaM even when no data is available yet, but one already
knows what parameters (PARAMCD) one will in a specific analysis dataset.

For example, when one is planning an ANALYSIS dataset "Pharmacokinetic Parameters Analysis Dataset" (ADPP),
with the parameters AUCOT (Area Under the Curve from 0 to Last Observation), AUCINF (Area Under the Curve
from 0 to Infinity), CL (Clearance), CMAX (Maximum Observed Concentration), TMAX (Time of Maximum
Observed Concentration), HALF (Terminal Half-Life), and VSS (Volume of Distribution at Steady State), and want to
indicate which units were used for which parameter, one can already develop the ValueList from the planning
information (e.g. Statistical Analysis Plan).

For the units, we do know which one will be used:

PARMCD (Parameter Code) Description AVALU unit
AUCOT Area Under the Curve from 0 to

Last Observation
ng*h/mL

AUCINF Area Under the Curve from 0 to
Infinity

ng*h/mL

CL Clearance mL/min
CMAX Maximum Observed

Concentration
ng/mL

HALF Terminal Half-Life h
TMAX Time of Maximum Observed

Concentration
h

VSS Volume of Distribution at
Steady State

L

For PARMCD for Pharmacokinetic Parameters , there is no specific controlled terminology from CDISC, so we want to
make a "sponsor-defined codelist". For "Unit" there is no CDISC-CT in ADaM either, but there is a PKUNIT CodeList
(C85494) in SDTM. It has all our needed terms except for "ng*h/mL" and (surprisingly) "mL/min". So for the AVALU
variable, we will start from that SDTM codelist.

As we currently only have loaded ADaM-CT, we need to "import" this SDTM codelist first. For this, we use the menu
"Add - CDISC Controlled Terminology":

The system then asks us what version of CT we want to import. Scrolling down to the latest SDTM-CT:

It then asks whether we want to add all codelists, or just a single one. We select "Add Selected CodeLists" as we only
want to import the PKUNIT codelist:

It then presents a list, which we search and find PKUNIT:

(Remark that the list allows to select several codelists).

After "OK", in the "CodeList Definitions" tab, this leads to:

which is an SDTM codelist, but that's just fine.
We can now either edit this codelist or make a subset of it containing only the units that we need. Making a subset is
faster, so we do that, using the menu "Edit - Generate Subset CodeList", and then checking the units we want to keep
(there are only 3, as 2 of the 5 are not in the list):

The system then proposes an OID (identifier) and a Name, which is just fine:

After "OK", the CodeList is generated, and we see it in our list in the "CodeList Definitions" tab:

We then still need to add "ng*h/mL" and "mL/min" to it, which will then be considered "Extended" values. So we click
the "Edit" icon (first on the left), and choose the tab "EnumeratedItem" (as there are no "translations" for the units)
leading to:

In the first empty cells (4th and 5th line) we can now add our 2 other units:

Do not forget to mark them as "ExtendedValue". If we forgot and use the button "Validate", the system will complain:

Clicking "OK", the updates the CodeList. We can then still check using the "View" icon (the one with the magnifying
glass):

Let us set up a new CodeList with the PARMCD values. In order to do so, use the menu "Add - CodeList Definition":

This creates an empty row in the table of our "CodeList Definitions" tab table:

We assign it an OID (identifier), and a Name, and set the datatype to "text", and set "IsNonStandard" to "Yes". For
example:

We can then start adding the parameter codes and names by clicking the "Edit" icon on the left, leading to an empty
table for which we select the "CodeListItem" tab, as we also want to add the "decoded" values, i.e. the description of
each of the PARAMCD values:

which we then fill with the values for PARAMCD and then click the "Validate" button:

Notice that the "Edit" icon changes color to red, meaning that something is missing.
stating that when we use "CodeListItem", we must also add "Decode" values. So, for each of them we click the "Edit"
icon and then also add the "decode" information. E.g.:

and of course also for the other ones.

When all done, and clicking the "Validate" button again, we get (if we have done everything right):

After we go back to the main table by clicking "OK" until we get there, we can still inspect our work by clicking the
"View" icon (magnifying glass):

As one can guess, generating such "sponsor-defined" codelists is something we want to do over and over again for each
study. Using the button "Save to Library":

we can then save the codelist to file (in Define-XML format) and when needed in another study, just use "Load from
Library". This means that the software fully supports reuse of Define-XML objects.

Now that we have our PARAMCD CodeList and our "PKUNIT subset" CodeList, we just still need to generate "single-

item" codelists for units, as in our ValueList, we want to state that when e.g. PARAMCD = AUCOT (Area Under the
Curve from 0 to Last Observation), then the only unit (in AVALU) is "ng*h/mL".
This means that we need our "PKUNIT subset" to be "splitted" in different codelists each containing one single value.
To do so, we select the codelist, and then use the menu "Extra - Generate single-item CodeList from (subset) CodeList".
This then leads to the following new codelists:

OK! Let's start generating the ValueList!

We start from the codelist "CL.C85494.PKUNIT.SUBSET" that has our 5 units. We use the menu "Transform -
CodeList to ValueList", and select the codelist:

This time, we do not check "Create simple 'WhereClause' automatically", as we suspect that the system will not be able
to make an educated guess what our units will be dependent on anyway.

In the next step, a prototype ValueList is generated:

For each of the 5 units, the data type is of course "text", and the length just the number of characters. This leads to:

Now, for each of the "cases", we need to add the "where-clause". The table we start from is again:

PARMCD (Parameter Code) Description AVALU unit
AUCOT Area Under the Curve from 0 to

Last Observation
ng*h/mL

AUCINF Area Under the Curve from 0 to
Infinity

ng*h/mL

CL Clearance mL/min
CMAX Maximum Observed

Concentration
ng/mL

HALF Terminal Half-Life h
TMAX Time of Maximum Observed

Concentration
h

VSS Volume of Distribution at
Steady State

L

So, for the unit "ng*h/mL" we need to make the statement "WHERE PARAMCD EQ AUCOT", and for the unit "h", we
need to make the statement "WHERE PARAMCD IN ["HALF","TMAX"], etc..
Clicking the cell "WC.IT.h", we add exactly that information as:

We can check by using the "Show 'Where' clause:

We than also do similar for the other 4 units, based on the above table. This finally leads to:

When done, clicking "OK" first gives us a summary, and then asks us to what ADaM variable we want to assign the
ValueList, for which we select "AVALU":

When we then use "HTML View", we find:

which is exactly what we intended to obtain ...

Extracting page numbers from an annotated
Case Report Form (aCRF)
The capability of extracting annotations and their page numbers from annotated CRFs in PDF format10, and analyzing
them for incorporation into the define.xml have been extended.
Before starting this feature, ensure that the aCRF-PDF file location is defined as a document (tab "Document Links")
and has been declared as the annotated CRF (tab "Annotated CRFs").
Then use the menu "Extra - Insert CRF Page Numbers from Annotated CRF". This leads to the dialog:

Reason for these choices is that there are many different ways to add "annotations" to CRFs. The first is to use real PDF
annotations., i.e. "PDF Annotations". This method is becoming more seldom, as it does not lead to nicely colored boxes
with the SDTM annotations. The second method is to add "text boxes" with a colored background, which has become
more popular. If you still have another method for adding annotations, please feel free to send an example aCRF, and
we will add an additional choice for it.
If you see such nicely colored text boxes, you will probably want to use the second method. If you are sure that all
relevant "annotations" are in uppercase, also check the checkbox "Retrieve only from uppercase text". That will surely
speed up the process, as otherwise also all other "non-annotation" texts will be retrieved and analyzed against what is in
the define.xml. So, in such a case, use:

When clicking "OK" another dialog is displayed:

10 Unfortunately, FDA and other regulatory authorities still require this ancient PDF technology for annotated CRFs to
be used, this although already 15-20 years ago it was demonstrated that this can be done much better by using CDISC
ODM with a stylesheet. This would also enable to do everything electronically in an automated way.

https://www.cdisc.org/standards/data-exchange/odm
https://www.cdisc.org/standards/data-exchange/odm

confirming on what PDF file the extraction and analysis will be performed (you can still cancel now), and also asking
whether you want to also have a CSV file generated that than can be imported into a worksheet like Excel.
This can be very interesting for large aCRFs and when decisions will have to be made - the presence of an annotation in
the PDF doesn't necessarily mean that the Origin needs to be set to "Collected" ("CRF" in the case of Define-XML
v.2.0), and one wants to make such decisions as a team, or wants to make these decisions later. For example:

When clicking "OK" the system will start retrieving the annotations and analyze them by comparing with what is in the
define.xml, especially on the content of the variable names (including ValueList-level variables). Depending on the size
of the aCRF and what is in the define.xml, this can take considerable time, so a "progress bar" is displayed:

When finished, the following dialog with results is displayed:

For example, for the ValueList variable with OID=IT.DS.DSDECOD.3, the system found annotations on pages 5, 27
and 28, whereas the define.xml only has page numbers assigned for this variable. If we then check page 5, we find:

and in the HTML "View", we find:

i.e. that is not applicable for the case that DSSCAT is empty11. This means that in this case, one will probably not want
to change the existing PDF-page numbers assigned, and thus leave the checkbox unchecked.

Another example is AGEU (Age Unit):

where we indeed find an annotation on page 5:

which is preprinted. So the assignment of "Assigned" in the define.xml is correct.
In the future, we want to develop AI-based systems to even better interpret aCRFs to automatically set the "Origin" in
the define.xml.

When looking into the CSV file that is generated, we find:

11 We are further working on also interpreting the "WhereClause-s" to further refine the analys.

and when then imported into a worksheet like Excel:

which can then be used for making decisions whether (and for which) variables, the define.xml needs to be updated.
The latter is done by checking the checkbox in the above dialog.
For example, for VSREPNUM, if the CRF had a field for the "repetition number" (in our case it is preprintet), one
would check the checkbox for it:

and the result in the HTML "View" would become:

One can of course then still edit the page numbers, e.g. by clicking the "Edit" "hyperlink", which is explained in the
next section.

IMPORTANT: generating the page numbers in the define.xml from extracting the annotations from the aCRF is a nice
help to speed up the work12, but it still your own responsibility to make the decisions to do the assigments correctly.

Starting Editing from within the "HTML View"
From the screenshots in the manual, one will have already noticed something special in the "views" in the "HTML
View", I.e. the "Edit" links, like:

12 User of other software told us that such assignments often costs them several days, and must be repeated when
something changed in the aCRF.

When one e.g. the "Edit" on the line "Study Name" clicks, then the "HTML View" is pushed to the background and the
field where one can change the value for "Study Name" becomes available:

and one can then easily change the value in the field.

This is a very interesting feature, allowing to easily switch between "View" and "Edit" for very many of the pieces of
information. For example, when one clicks on "Edit" for "Source / Origin" for "VSTESTCD":

then the system jumps back to the editor, presenting:

allowing to change the information "Assigned" and "Sponsor". Suppose e.g. that we want to change "Assigned" to
"Derived" (which in future may be well possible with the raise of e.g. AI methods", we just click on "Assigned", and
the wizard shows up:

and one can change the value by clicking the "Derived" radiobutton.

When then returning to the "HTML View"

we see that for "Method", a new link "ADD" has appeared, as when the "Assigned" is provided, the Define-XML rules
state that then also the derivation method must be provided. Then clicking the "ADD" link, the editor opens an entry
screen:

which could e.g. be filled with:

After clicking "OK" and navigating to the "Method Definitions" panel, one finds the method with an automatically
assigned OID and Name:

and when then returning to the "HTML View" by clicking the button, one finds:

Of course, this is just a hypothetical example …
If one then clicks "Show Details", we get:

I.e. the HTML View jumps to the "Methods" section, and shows further details, if any.
Remark that Define-XML is essentially multi-language, so one could also add an additional Japanese or Chinese text.

Adding definitions from CSV files
Unfortunately, there are still many companies who use worksheets like Excel to set up definitions for generating a
define.xml. In combination with (usually low-budget or free) "black box" software for which no official manual is
available, this will very often lead to disaster, and to a "trial and error" methodology with many "try" cycles.
Some of our customers asked us to be able to use the information from these worksheets anyway, as using spreadsheets
is the usual way of working within their company.

The Define-XML Designer enables to use CSV files exported from worksheets to be used as input into the define.xml,
either at the variable level or at the dataset level. We will start with the variable level.

Adding variable properties from CSV files
Condition for using these features is that some dataset definitions and their variables are already available, e.g. from a
selected template or generated from SAS-XPT files.

When using the menu "Add - Variable Properties from CSV File":

one has the choice of adding values for "Origin", "Methods", "Comments" and "CRF pages". We will demonstrate here
for the case of the user wanting to add some Method definitions (define.xml "MethodDef") from a CSV file. So, when
having selected "Comments from CSV file", this will first lead to a "file chooser", allowing the user to select a CSV
file, and then to another dialog:

In most cases, one will only need the lower part of the dialog, the use of the upper part will be explained later.

Important in the CSV file is that the first line is a "header line" containing the "field names", for example:

defining that for LBSTRESC, VSSTRESC and MBSTRESC (the list will usually be longer) we will add specific
method descriptions to "MethodDef" in the define.xml.

It can of course be that (as the CSV is exported from a worksheet), that there are more fields, for example:

The choices then are:

After clicking "OK", new method definitions will be added to the "MethodDef" elements, and in the "Method
Definitions" tab, we find 3 new entries:

Remark that the description text of the method is not in the "Name" attribute, but in the underlying "Description"
element13. We can see this by clicking on the "magnifying glass" icon on the left:

Also, each of the newly defined methods is then immediately assigned to the variables VSSTRESC, LBSTRESC and
MBSTRESC respectively. If we use "View - define.xml in the browser, we e.g. find:

Of course it is not needed to have all the lines in the CSV file to point to the same "type" of variable (in our case
xxSTRESC variables). If the CSV file also contains a definition for e.g. VSSTAT, like:

then also a method definition for VSSTAT will be added and assigned to VSSTAT.

Important to notice here is that when there was already a method definition assigned to e.g. MBSTRESC, the newly
generated one (with a separate OID) will be assigned to MBSTRESC, but the old MethodDef will not be deleted - it just
is then "orphaned" and may not be referenced from any variable. It can later be removed using the "Cleaning"
procedure.

It can also be that one has such a CSV file, but only want to use part of it, e.g. restrict the assignment to specific
domains or datasets. In such a case, the upper part of the dialog comes into play.
Suppose that we want to restrict the assignment of the method to LBSTRESC, the following is then used:

13 The reason is that the description text may be language-dependent, i.e. one may have different description texts for
different languages.

Where one can provide a single dataset name, or a blank-separated (or comma-separated) list of dataset names.

Some variables such as VISITNUM are usually used in a good number of datasets. If we want to add the text for the
method from the CSV file for specific datasets (so, not for all of them), the latter may e.g. look like:

For the system, this may be confusing, as it provides 3 different methods for a single "generic" variable (VISITNUM),
so if we just use the lower part of the dialog:

the system does not understand which of the 3 to use, reading them one after each other from the CSV file, and, for
safety reasons, just generates one, and solely assigns it to the first dataset definition it finds:

and in the HTML View:

If we however only use a single method for VISITNUM, as in:

and only use the lower part of the dialog, the system still doubts whether the method for VISITNUM should be assigned

to all instances, i.e. to each dataset-VISITNUM, and for security reasons, only assigns it to the first it encounter. The
user can then still assign it to all others using the editor. The reason is that some sponsors use a single method definition
for variables such as VISITNUM, and others generate a different method definition for VISITNUM per dataset
definition. We have however also seen a lot that "Assigned" is used, which one could regard as "the lazy method".
For "STUDYID", the case is however clear. Essentially, the value, and thus also the properties must always be the same,
for each row in each dataset described in the define.xml.

If we want to assign a single method for VISITNUM to all the datasets, there are different ways, that all involve the
upper part of the dialog.

In such a case, one must also use the upper part of the dialog, i.e.:

For the dataset choice, one must then choose between taking the dataset name from a CSV field (this will be the usual
case) or set the dataset to be applied to using the radiobutton "Dataset Name provided by the user". The usual case is:

Then the specific descriptions for the method for VISITNUM will be applied to VS, LB and MB, but not to other ones,
e.g. leading to:

and in the "View", e.g. for MB:

Alternatively, the user can assign one or more datasets/domains, like e.g.:

in which case the VISITNUM method will only be assigned to the datasets MB and MI.

One can also, in a very similar way import the page numbers on the aCRF for the variables, e.g. as:

This then only requires the lower part of the dialog to be used.
Remark that the page numbers must be delivered as a blank-separated list. Do not use commas!
When finished, the system then shows a message:

and we e.g. find in the HTML View:

where we see that for VSORRES and VSORRESU the page numbers have been imported from the CSV file, and
"Origin" be set to "Collected". However "Source" has not been assigned, as the system cannot know who collected the
data. This can e.g. also have been the subject itself.

Adding dataset properties from CSV files
Similar can be done for some properties of the datasets:

As well dataset descriptions (like "Adverse Events" - but also for custom domains), dataset structures (e.g. "One record
per time point per visit per test per subject"), the "dataset class" (especially for custom domains - e.g. "Findings") or the
dataset key variables) can be added from a CSV file.
We will elaborate this for the latter. For example, we have a file "Keys.csv" containing:

Remark that the list of the keys is "blank-separated".
When we then use the menu "Add - Dataset properties from CSV file - Keys from CSV file", after the CSV file selec-
tion, the following dialog is shown, asking us which "fields" in the CSV must be taken for selecting the information:

It can of course be that the file contains more fields … or that there is one single file for all four types of information:
dataset description, structure, class and keys.
One may also notice that this dialog is very similar to that one for adding properties for variables, but with the upper
part of the dialog missing, as there is nothing to do additional filtering on: the "dataset" is already the highest level.
After clicking "OK", the information is added, and we e.g. find for LB:

and in the HTML View:

Once again, using the menu "Add - Dataset Properties from CSV file" and "Add - Variable Properties from CSV file"

should not be the "normal" way to add information to the system. It is just a "workaround" for those companies who
still keep their SDTM, SEND or ADaM specifications in worksheets like Excel, which we consider "bad practice".

Cleaning
Especially when starting from one of the templates, you will probably not want to keep a good number of domain or
dataset definitions. For example, when your study is not a cancer study and also does not have questionnaires, in
SDTM, you will probably want to drop QS (questionnaires), TU (Tumor/Lesion Identification), TR (Tumor/Lesion
Results), RS (Disease Response and Clin Classification).
In order to do so, navigate to the tab "Dataset Definitions", and search for these domains (using the "Search" panel) one
after the other, e.g.:

This will then immediately select the "TU" row.
Then remove it using the "Delete Selected Row" button. The system will ask for a confirmation.
After having removed QS, TU, TR and RS, the result is:

However, these (now removed) dataset definitions of course reference a lot of variable definitions, codelists, and maybe
even valuelists, which have not been removed automatically. Keeping them to the end of the process, and then doing the
"clean" doesn't harm, but some people prefer to remove them immediately after having removed the dataset definition
itself.

In order to do such a "Clean", use the menu "Edit - Clean":

leading, after a few seconds, to a new dialog:

explaining that there are now 136 unused (unreferenced) variable definitions, and (surprise!) 1025 unreferenced
CodeLists. As the dialog however states, most of these are to be used at the ValueList level, so removing them before
all ValueLists have been developed, removing all unreferenced CodeLists may not be a good idea.
Even if one does, one can later always add one or more CodeLists from the CDISC Controlled Terminology using the
menu "Add - CDISC Controlled Terminology".
When clicking "Show Unreferenced" right from "ItemDef", a list is displayed:

When then only checking the checkbox for "ItemDef" and clicking "OK", the listed variable definitions are removed
from the system:

Loading additional domains / dataset definitions from a
template
Suppose we have the following dataset definitions:

and want to add a dataset definition for the MB (Microbiology) domain, using one of the templates.
This can e.g. be the case when we start from a define.xml from another source, or from a prior, similar study, but we
need to add additional dataset definitions.

In order to add a dataset definition from a template, use the menu "Add - Dataset Definition from Template":

a file chooser is displayed, showing all the template files for the current version of the define.xml. For example for
Define-XML v.2.1:

In our case, we select the template for SDTMIG.3.4. Remark that it is always a good idea to select a template for the
standard version of the already loaded define.xml. This is not always possible, e.g. for SDTM when one want to load
dataset definitions from the "Medical Device" standard or the "Associated Persons" standard.
After having selected the template file and clicking "Open", the system analyzes the file and shows us the dataset
definitions that are present in that template file. For example:

where we select MB (Microbiology). After clicking "OK", the system loads the MB dataset definition from the template
(ItemGroupDef) including all variable definitions (ItemDef) for that dataset definition, and that were not already
present. It then comes with a summary of the results:

It also states that, as the template does not contain any CodeLists itself, one still may have to load additional controlled
terminology and assign it to some of the variables.
If one then navigates to the "Dataset Definitions", one sees that a row has been added:

When the original dataset definition was not created by the "Define.xml Designer", it may well be that the OID
(identifier) of the dataset definition has another form, but that is just fine, as OIDs are just arbitrary identifiers.

When one then navigates to the "Variable Definitions" tab, and scrolls to the bottom, one finds a number of variable
definitions that were added for the MB dataset definition:

If no CodeList for e.g. MBTESTCD was already present, we will still need to add it using the menu "Add - CDISC
Controlled Terminology", look for a codelist for MBTESTCD, and load it. I.e.:

and then check whether that it is indeed correctly referenced by the MBTESTCD variable definition:

P.S. the other possible way to add a dataset definition is of course to use the menu "Add - Dataset Definition", which
adds a row to the corresponding tab, and then adds an additional row at the bottom. This row can then be filled with
information, and the necessary variable first be created and then added. This is of course a lot of work and can be error
prone. This will more often the case when developing dataset definitions for ADaM, and seldom when generating
dataset definitions for SDTM and SEND, with the exception of "sponsor-defined domains".

Saving to and loading from a local Library
When developing define.xml-s from "scratch", using e.g. based on a specification from the sponsor, i.e. the information
which datasets need to be developed with which variables, which codelists, valuelists etc., it is always a good idea to
develop "libraries" of items for later reuse. This can later save a lot of time. Suppose e.g. that a service provider
received the specifications in the form of one or more Excel files, and for each new study, the list of datasets, variables,
codelists etc. from that sponsor is similar, then the use of such "libraries" can be very efficient.

When we have e.g. developed a set of ValueLists and WhereClauses, then we can save these individually to the
"library", and later reuse for the next study from the same sponsor and similar study.

To do so, select the tab of the type of items you would like to create a library file for:

and click the button "Save to Library". The system will then first run a local validation against the Define-XML
standard (using Schematron) and report possible issues. After that, a file chooser is displayed allowing to save the
contents of the selected panel to an XML file. An example of the content of such a file is:

which essentially is just a subset of a define.xml file, but only for the current type of element.

Like this, the user can develop sets of e.g. variables, dataset definitions, ValueLists and WhereClauses and reuse them.
When then developing the define.xml for another study, the elements can then be loaded again using the button "Load
from Library":

One can also repeat this when one has different such files for the same panel. For example, when one has such a library
file for all variable of DM, and one for LB, one can load these after each other. The system will then first ask whether
one want to append or replace the already present definitions:

When appending, and in case there are duplicates, such as for STUDYID, DOMAIN and USUBJID, the system will
notice this, and ask the user what to do. For example, for STUDYID:

Normally, "Allow duplicate OIDs" is not a good idea, but can be helpful when one wants to change the OID and
(possibly also) Name of the variable immediately after loading. This can e.g. be an option for VISITNUM, e.g. when
one wants to have it as an integer in one domain/dataset (such as TV - Trial Visits) and as a float for another, e.g. when
one expects "Unscheduled Visits" in SV (Subject Visits).

The result can then e.g. be:

Validating the define.xml
We have already seen that most of the panels have a "Validate" button to perform "local" validation. For example, when
inspecting the "Variable References" (ItemRefs) for the LB dataset definition, and we made an error in assigning the
"keys" (KeySequece attribute), and click the "Validate" button, we may find:

At regular moments in the process, we may however also want to do validation on the whole of the define.xml.
In order to do so, use the menu "Validate - Validate All":

or use Ctrl-V on the keyboard. This leads to a dialog;

If some information is still missing (like a "Metadata Version Description") one will still want to add it into the fields of
the upper part. In the lower part one can choose by either a (fast) validation against the XML-Schema, or a more deep
validation using the Define-XML Schematron. The latter can be found in the folder "Schematron", so that one can
inspect the validation rules oneself14.
Let us first do a simple "XML-Schema validation only" and see whether it can detect the problem of the duplicate keys
in the dataset definition for LB. So, we just click "OK". The result is:

and more explanation is provided after clicking "OK":

14 This is far superior to the Pinnacle21 validation for define.xml files. P21 is also completely "black box" - it is not
possible at all to find out how the P21 "self-invented" rules have been implemented.

where we see the schema message "Duplicate unique value [2] declared for identity constraint of element
"ItemGroupDef"."
For non-specialists, this may be not very well-explanatory, which is a well-known problem of XML-Schema validation
messages. It however tells us that something is wrong with an "ItemGroupDef", which is representing dataset
definitions, so we may want to go back to the "Dataset Definitions" panel, and do a "local" validation there. When we
do so and use the "Validate" button (near the bottom, on the right), we get:

Providing a more clear message (as the local validation uses Schematron), and the cell for "IG.LB" being highlighted.

The second possibility is to do XML-Schema validation plus more advanced Schematron validation. When we select
the radiobutton:

a message is displayed that the validation will be run in the background (so that the user can do other things in the mean
time) as the process can take 1-2 minutes. After clicking "OK" in both the dialogs, the process starts and after 1-2
minutes, the message "define.xml is not valid" is shown again, and when then clicking "OK" more information is
provided:

with the full text here:

Duplicate unique value [2] declared for identity constraint of element "ItemGroupDef".
/ODM[1]/Study[1]/MetaDataVersion[1]/ItemDef[1]:
 Rule #83: No def:Origin is found on the Variable-level ItemDef with OID 'IT.AE.STUDYID' and Name
'STUDYID' for which no ValueList is referenced

/ODM[1]/Study[1]/MetaDataVersion[1]/ItemDef[333]:
 Rule #83: No def:Origin is found on the Variable-level ItemDef with OID 'IT.VS.VSORRES' and Name
'VSORRES' having an associated ValueList but (only) 3 from 5 of the ValueList ItemDef-s have a def:Origin present

/ODM[1]/Study[1]/MetaDataVersion[1]/ItemDef[333]:
 Rule #155: The ItemDef with OID 'IT.VS.VSORRES' and Name 'VSORRES' must have a def:Origin or each of
the referenced ItemDefs in the associated ValueList must have a def:Origin

The first message comes from the XML-Schema, which we indeed already found before.
The second states that for the variable definition with OID "IT.AE.STUDYID" and Name "STUDYID", which does not
have an associated ValueList, no def:Origin was found.
The third and fourth are variations of the same problem: there is no def:Origin on the variable definition for VSORRES,
but not all ValueList associated ItemDefs do have an Origin assigned.

One surely has already noticed the two checkboxes near the bottom, the first only coming available when additional
Schematron validation is selected:

The first one allows to also validate "special" Define-XML rules that require "lookups" using RESTful Web Services.
These can be found in the file "define_2_1_rules_RWS.sch" for SDTM and "define_2_1_rules_SEND_RWS.sch" for
SEND for Define-XML 2.1. There are also similar rules for Define-XML 2.0 for SDTM, but these are not actively
maintained anymore.

When the checkbox "Allow use of RESTful Web Services …" is checked, a message is displayed:

explaining that the system will submit queries to the XML4Pharma server (which of course requires an internet
connection15). It also states that such a full analysis can take considerable time, so it is run in the background, so that
the user can continue with other things. When the analysis is finalized, a message dialog will be displayed.

Within CDISC CORE, the team is currently (February 2026) busy starting bringing everything together to also
implement Define-XML rules that need to make checks against the CDISC-Library using its API. When this is ready
(which still may take some time), we will replace the current RestFul Web Service by the use of CORE.

15 It also requires that queries over port 8080 are allowed, as that is the port that the RESTful Web Services uses.
If no internet connection is available or fails (e.g. server down) the "local" validation part will still run, and a message
about the failed use of the RESTful Web Services will be displayed.

One such a rule e.g. for SDTM is that when the variable is "Required", the variable reference to it
(ItemGroupDef/ItemRef) must have the attribute and value Mandatory="Yes". So for testing, let us set
Mandatory="No" on the "required" variable for LBTESTCD:

When we then run the validation again with the checkbox "Allow use of RESTful Web Services …" checked, at the
end, we get:

Some of the messages in table form for better readability:

Message Reason / Explanation
/ODM[1]/Study[1]/MetaDataVersion[1]/ItemDef[333]:
 Rule #83: No def:Origin is found on the Variable-level ItemDef with
OID 'IT.VS.VSORRES' and Name 'VSORRES' having an associated
ValueList but (only) 4 from 5 of the ValueList ItemDef-s have a def:Origin
present

VSORRES itself does not have an
Origin assigned. This has been
delegated to the ValueList level.
However, only 4 of the 5 ValueList
ItemDefs do have an Origin assigned.

ODM[1]/Study[1]/MetaDataVersion[1]/ItemGroupDef[18]/ItemRef[6]:
 ItemGroupDef/ItemRef with ItemOID 'IT.LB.LBTEST' for variable
with Name 'LBTEST' in ItemGroupDef with Name 'LB' must have
@Mandatory = 'Yes' because Core = 'Req' in standard 'SDTMIG' version
'3.3'

In the define.xml, LBTEST has not
been assigned 'Mandatory="Yes"'
although it it a "required" variable.

/ODM[1]/Study[1]/MetaDataVersion[1]/ItemGroupDef[18]/ItemRef[12]:
 Rule #149: Missing reference to a Codelist 'LBSTRESC' for variable
'LBSTRESC' in dataset with OID 'IT.LB.LBSTRESC' and Name
'LBSTRESC' that expects CDISC Controlled Terminology according to the
'SDTMIG' standard version '3.3' - Number of ValueList items = 17 -
Number of non-numeric ValueLists with a CodeList = 16

The assignment of a codelist for
LBSTRESC has been delegated to the
ValueList level, but there is one
ValueList ItemDef that did not get a
codelist assigned although it is marked
as "non-numeric".

For the third case, the reason is that for LBTESTCD=GLUC, there is a value "<2.2204" so the mappers decided to
assign DataType="text" to LBSTRESC for that. Maybe the rule should be further refined for such a case.

IMPORTANT REMARK
We cannot guarantee 100% availability of this RESTful Web Service!
If you would have this RESTful Web Service available on one of your own servers, please let us know so that we
can help you with make that realize.

The checkbox "Define-XML is used in a regulatory context" will usually only be used in the case of Define-XML v.2.0,
as the latter does not have a method to provide this information. For Define-XML 2.1, there is the "def:Context"
attribute on the ODM element. If it is present (essentially, it should), it's value, which can be "Submission" or "Other"
will supersede the value of the checkbox. As the tooltip on it tells us:

it is meant to implement e.g. FDA- or PMDA-specific rules for the define.xml. This however has not been implemented
yet.

