
SDTM-ETL 4.0: Summary of New Features

Author: Jozef Aerts, XML4Pharma

Last update: 2021-12-30

Summary

This document contains a summary of the most important new features of SDTM-ETL 4.0.
There are many minor improvements and new features that are not described in this document, but
that can be found in other manuals / tutorials of SDTM-ETL 4.0.

Automated installation of new or additional SDTM/SEND templates

When new versions of the SDTM-IG or SEND-IG are published, an update of the software is not
necessary anymore. The initial screen allowing to select which standard (SDTM or SEND) is used
and which IG version is now steered by an external file "SDTM_SEND_standards.xml". The
contents look like:

Each entry "Standard" in this file points to a template for that standard for a specific version of the
define.xml (2.0 or 2.1 – see further), and (when available) a file with the "CDISC notes". This
means that when a new version of e.g. the SDTM-IG is published, no software update is needed, but
only the new template files need to be installed, and a link to it to be added to the file
"SDTM_SEND_standards.xml" file. These files will then be provided by XML4Pharma at a low
cost.

For example, we added "SEND DART 1.1" templates in the current release in this way. Of course,
even when choosing "plain" SEND (3.0 or 3.1), one can always add the "SEND DART" afterwards
and merge it with the originally loaded template.
Immediately after it was published, we implemented the SDTM-IG v.3.3 and its corresponding
SDTM model v.1.7. When starting up, SDTM-IG v.3.2 however remains the default, as the
regulatory authorities such as the FDA do not accept SDTM-IG v.3.3 yet (status May 2020).
Also, as of December 2021, the new SDTM-IG version 3.4 has become available, and was
installed in this way. Also the corresponding PDF documents for SDTM v,2.0 and the SDTM-IG
itself were added.
Existing users of SDTM-ETL 4.0 can obtain a free upgrade containing SDTM-IG versions 3.3 and
3.4.

Automated generation of –LOBXFL variable values for SDTM-IG v.3.3 / 3.4

SDTM v.1.7 / SDTM-IG v.3.3 introduces a new set of variables, all ending with "-LOBXFL". These
"flag" variables represent the "Last Observation Before Exposure" and are used in almost all
Findings domains.
We regret that these variables have been added, as these are essentially "analysis" variables (like
other baseline flags), and "analysis variables" essentially should not be present in SDTM (they
should go into ADaM). These variables seem to have been added on request of FDA reviewers,
who are themselves not able to perform the necessary derivations to get "last observation before
treatment" data points. These derivations should however be very easy to perform.

But things are as they are …

As the derivation of values for –LOBXFL is based on that the first exposure is known, the
derivation may need an additional run over all generated data. Such an "extra run" has now been
implemented in the software.

In the stage where the mappings are executed (both for SAS-XPT as for Dataset-XML format), an
extra checkbox is presented:

The checkbox "Perform post-processing for assigning –LOBXFL" will indeed initiate a post-

https://www.cdisc.org/standards/foundational/sdtmig/sdtmig-v3-3
https://www.cdisc.org/standards/foundational/sdtmig/sdtmig-v3-4

processing step, in which the data is analyzed and the very last observation before the first
treatment, based on RFXSTDTC ("Date/Time of First Study Treatment") in DM ("Demographics")
is assigned for each unique test. When RFXSTDTC is a date only (without part), and the
observation has a "datetime of collection" that is on the same date of the first exposure, then it is
assumed that the observation is before the treatment. See further how to change this behavior.

Please do remark, that even when this checkbox is checked, you will need to provide a "default"
mapping for each –LOBXFL variable, as otherwise the system assumes that the variable is not to be
populated and will even not appear in the output files.
So, you will probably want to set the default value to "N" (meaning "no")

stating that the initial value (before the post-processing step) is the "no" value.
Remark that in case of output to Dataset-XML, it is not allowed to set the "default" value to the
empty value (e.g. $VSLOBXFL = '') as this will not create LOBXFL data points in the intermediate
file, as in Dataset-XML, empty values are just not "printed out". In case you only want to generate
XPT files, the use of setting the default value to the empty value is unproblematic.

Also note that the SDTM-IG explicitly allows to have an "N" value for -LOBXFL variables.

An example outcome of using the "post-processing", here for the PE dataset, is:

If you do not want this use this post-processing step that uses the above-mentioned assumptions,
leave the checkbox "Perform post-processing for assigning –LOBXFL" unchecked, and provide the
mapping for each "--LOBXFL" variable yourself.
As you might need the value of "RFXSTDTC", you may declare this variable as a "global variable"
(see the manual "Creating and working with Subject Global Variables") and reference it in the
mapping. This may e.g. allow you to assign the "last observation" flag to the last value that is at
least one day before the first exposure date.

Automated creation of codelist subsets at startup time

One of the problems with CDISC controlled terminology is that the SDTM-IG often constraints
them further, just as text, so non-machine-readable. Even though many implementers have asked
CDISC to also publish subsets of such codelists, the CT team keeps refusing this.
A famous example is the NY (Yes-No codelist) which contains "N", "Y", "NA", and "U" as allowed
values. For "flag variables", variables ending with "FL" however, only the "Y" value is allowed (by
constraint). The CDISC-CT team however still refuses to also publish a "Yes only" codelist.
Another example in the "STENRF" (Relation to Reference Period) codelist, which has 7 allowed
values. This codelist is also assigned by the SDTM-IG to the –STRTPT (Start Relative to Reference
Time Point) and -ENRTPT (End Relative to Reference Time Point) variables, but in that case, the
values "DURING" and "DURING/AFTER" are forbidden. Also here, the CT team refused to
publish a subset.

There are two ways this can be managed. The first is to add such subset codelists to each of the set
of codelists quarterly by CDISC. This is the strategy followed by Pinnacle21 (but it often takes
them several months to do so, at least for the "Community" version). It is however questionable
whether editing by CDISC published codelists is morally acceptable. We don't think so.
The second possibility is to generate such a "subset-codelist" "on the fly" when loading the CDISC-
CT as published by CDISC, which does not rely on editing existing codelists.
This is the strategy we have chosen.

When the choice of the SDTM/SEND version is due, the dialog now shows an extra panel with two
checkboxes, the first asking whether a "Yes only" codelist should be generated, and automatically
assign this codelist to all "flag" variables, all ending with "FL", like all the "baseline flags".
The second checkbox is about generating a subset of the "STENRF" codelist to the 5 values(without
"DURING" and "DURING/AFTER", and automatically assign this subset-codelist to all
"-STRTPT" and "-ENRTPT" variables:

http://www.xml4pharma.com/SDTM-ETL/tutorials/Creating_working_Global_Variables.pdf

The result when both these checkboxes are checked, is for example, for an -FL variable and for an
-ENRTPT variable:

"Yes Only" codelist
assigned to MODRVFL

Subset-STENRF ("for TPT") codelist
assigned to AEENRTPT

Define.xml 2.1 Implementation

The major feature is that define.xml 2.1 is fully implemented.
As the FDA has just begun starting version 2.1 (status December 2021), version 2.0 remains the
default:

One of the new features in the Define-XML standard v.2.1 is that for each domain, it can be defined
at the level of the domain/dataset which version of the SDTM-IG (or extension of it, like
"associated persons") is used. Also, and that is very useful, for each codelist loaded, it can be
defined what the codelist version is.
For example, if additional codelists are loaded from file, using the menu "Insert – CodeList
definitions from File", and a codelist (as ODM-XML) is selected, the following dialog appears
(example):

The newly loaded set of codelists can then be set as the "default version", or the already loaded
codelists can remain the "default".

Further details about working with the Define-XML v.2.1 standard is provided in a separate tutorial.

Full support for Chinese and Japanese characters using UTF-8 encoding

The Chinese regulatory authorities NMPA have recently published new guidelines, requiring that
labels for datasets, and variable values for a number of domains being submitted in the Chinese
language preferably using UTF-8 encoding. As the underlying technology of SDTM-ETL is based
on XML, non-European languages using UTF-8 were already for a long time supported, especially
when generating the datasets in modern CDISC Dataset-XML format. As of SDTM-ETL 4.0, this
support has been extended to SAS Transport 5 format1.
This is all hidden to the user: the system itself knowns when to encode characters as UTF-8, and
when to encode as ASCII. The only thing users need to take care of is that labels with Chinese
characters do not exceed 13 characters (corresponding to 40 bytes), and variable values with
Chinese characters do not exceed 66 characters (corresponding to 200 bytes).

1 It is however now already clear that the requirement for SAS XPT with Chinese characters is the worst possible
choice, and will lead to huge problems at NMPA. This is however recognized by NMPA yet. Therefore, we are
discussing the possibility with NMPA of allowing the sponsor the choice between modern Dataset-XML format or old
SAS-XPT format for electronic submissions.

Improved "New codelist from existing CodeList" dialog and functionality

The dialog that appears when using the menu "Insert – New CodeList from existing CodeList" has
obtained a lot more functionality that makes it even more easy to generate subset-codelists and to
extend codelists:

It was already possible to use the "Search" button to find a specific codelist, and then "click
through" (i.e. a "next" functionality) until the desired codelist to be subsetted is found, but one can
now also use the new "Search in CodeList" button, to find entries in the existing codelist.

For example, when the "Search in CodeList" button is clicked and "globulin" is set as the search
term in the dialog that pops up:

one can then search for all occurrences of "globulin" in that codelist using the "Search" and "Find
Next" buttons. Upon each "hit", one can then use the button "Add to list", to add the found entry to
the new codelist. With the "Display list" button, one can then display the list of those added, e.g.:

In this dialog, one can also remove items from the list (e.g. when one has made a mistake") using
the button "Remove Item from list".

When your "positive" list is ready, and after clicking "OK" in the "Display list" dialog, and the
button "Recreate table from list" is subsequently clicked, only the ones from the "positive" list are
retained and added to the new codelist:

One can then still add or remove items to/from the newly created codelist, e.g. to extend the codelist
with non-CDISC terms.
Also remark that the NCI code appears in the table when the starting codelist is a CDISC codelist.

This newly added "wizard" makes it even more easy to quickly generate subsets of codelists with or
without sponsor extensions.

Also new is that when the new codelist is then generated (and added to the underlying define.xml),
the user is also asked whether he/she wants to store this newly generated codelist to an external file
for future reuse (or even for use in study design!).

Such a generated file can then be read in again in mappings for other studies using the menu "Insert
– CodeList Definitions from File into define.xml".

Also new is that when a new term is added manually (using "Insert Row"), the checkbox "Extended
Value" is checked automatically. It can of course be unchecked again when the manually added
term is an official CDISC term for that codelist. In that case, also the NCI code must be entered.

Additionally, when a cell in the SDTM/SEND table is selected, and a codelist is already associated
with that SDTM/SEND variable (e.g. "LBTESTCD"), then the codelist is pre-selected when using
the menu "Insert – Create new CodeList from existing CodeList".

When a codelist is generated from an existing CDISC-CT codelist (which has an NCI code), and
none of the original items remains in the edited codelist (i.e. only new values are present), then the
user is asked whether the NCI code of the codelist may be dropped (this will usually be the case) or
whether it should be retained anyway this although none of the items is a CDISC term anymore.

Finally, when define.xml 2.1 is used, the user is asked to confirm the codelist version of the newly

generated codelist. It is also possible to assign another codelist version to the newly generated
codelist (do however use with care!) or not to assign a CDISC/NCI version to the subset or new
codelist. The latter may be the case when the new codelist is a "sponsor-defined" codelist.

Subsetting codelists: handling of "Enumerated" codelists

Unfortunately, the CDISC-CT team is more and more publishing its codelists as "enumerated"
codelists, even for codelists that contains codes for which "decodes" exist. Typically, these are lists
of "test codes" where the "test name" is in a separate list. As sometimes the codes are meaningless,
this makes it difficult to create good subset codelists.

For example, for the codelist "Alzheimer's Disease Assessment Scale - Cognitive CDISC Version
Questionnaire Test Code" (CL.C100132.ADCTC) just contains codes like "ADCCMD" which are
hard to interpret when setting up a subset-codelist. The link with the "test name" is only provided
through the NCI code. As such, when starting to create a subset, the following dialog and table
appears:

Although the corresponding "test name" appears as a tooltip, using such an "enumerated" codelist is
very unpractical when trying to create a subset.

Therefore, when such an "enumerated" codelist is detected, usually with "test codes", for which
there also is a corresponding list with "test names", the user is asked whether the codelist may be
transformed "on the fly" to a "classic" codelist with codes and decodes (as would be the better
practice anyway):

When the user then selects "No", the above displayed "enumerated" list appears. When however,
"Yes" is selected, the system looks up the corresponding "test names" in the corresponding
"enumerated" list with "test names" and adds them to the list with codes, as "decodes".
In the case of very long codelists, these "look ups" may require several seconds to complete.
This then leads to:

Which is much more practical when generating a subset. When then finishing the subset creation,
the subset-codelist is then also stored in the define.xml as a "classic" codelist, and not as a difficult-
to-handle "enumerated" codelist. This is also in the advantage of the reviewer at the regulatory
authorities, as he/she will see both the codes (test code) and decodes (test name) when inspecting
the define.xml.

When using the menu "Edit – SDTM/SEND CodeList", the same functionality can also be applied.

For more detailed information, see the document "Subsetting and Extending CodeLists".

Improved CodeList-CodeList mapping

Codelist to codelist mapping can sometimes be tedious because CDISC controlled terminology uses
"jargon" that is not always known to the mapper. For example, not anyone may know that "WBC"
(the CDISC code) means "White Blood Count" which is also known as "Leukocytes".

When using the codelist to codelist mapper wizard, a few new options are now available for use
with the feature "Attempt 1:1 mapping":

One sees two additional checkboxes:
 Also use CDISC Synonym List
 Also use Company Synonym List

Using the "CDISC Synonym List", when allowing the system to attempt a 1:1 mapping, will also
look into the published CDISC synonyms. One can also use a "Company Synonym List" containing
the CDISC-NCI codes and locally used synonyms. This list is expected to be located in the folder
"Company_CT" and the file name being "Company_CT.txt". Its contents look like:

Using the checkbox "Ask to store mappings as synonyms to Company Synonym List" allows to
extend this list with new mappings to "locally" used terms.

In our case, using both above mentioned options (checking both checkboxes):

and clicking "Attempt 1:1 mapping" leads to:

which in this case is 100% correct.
If one does not like what the system proposes, one can always revert and go to a "manual" mapping,
by clicking the "Reset from 1:1 mapping attempt".

The automatically generated script then is:

Working with the "Findings About" domain

When SDTM was first developed, there were about 20 domains, and everybody (except a few) was
expecting that this number would not increase very much. In the latest SDTM-IG version 3.2 there
are over 50 domains, and even that was not sufficient, as it did not cover well the use case of
findings that are related to interventions and to events.

For this case, the FA domain "Findings about Events and Interventions" was created.
The SDTM-IG lets implementers the choice between a single FA dataset, and a series of "splitted"
datasets for findings about different existing SDTM "Events" and "Interventions" domains. In the
latter case one may e.g. have an "FAMH" dataset ("Findings About Medical History") and an
"FAAE" ("Findings About Adverse Events") dataset.
The name "splitted" is confusing, as one will usually not split a single FA dataset in datasets such as
FAMH and FAAE, but one will create a single "FA" instance for "Medical History" and one for
"Adverse Events" right from the start.

As of SDTM-ETL v.4.0, when one "drags-and-drops" the FA row to the bottom (after the last
template domain row), or when one selects the FA row from the template and then uses the menu
"Edit – Copy Domain" followed by "Edit – Paste Domain", the following dialog is displayed:

Which is the usual dialog asking whether mappings for STUDYID, DOMAIN, USUBJID, and
FASEQ can be automatically generated (recommended when using standard ODM as the source).

After clicking OK, the following (new) wizard is displayed:

The software automatically looks up all "Interventions" and "Events" domains in the template, also
sponsor-defined ones, and then creates a list of "FA domain specific" domains such as "FACM",
FAEC, … The first entry however is "Generic FA", meaning that a single FA instance will be
created, which should then contain all "Findings About" entries, independent of what the related
domain is. If one selects "Generic FA", a single row is created at the bottom, from which one can
start the mappings to a "generic" FA dataset:

This is the simple case and does not deviate from the usual case for any other domain.

One can then start generating the mappings in the usual way.

In a number of cases however, one will want to generate "domain-specific" FA datasets, such as
FAMH ("Findings About Medical History") or FACE ("Findings About Clinical Events"). For
example, when one wants to create an FAMH dataset instance, one would choose:

meaning that an FAMH dataset will be created.

After clicking OK, a new wizard is displayed:

In the SDTM-IG 3.2, it is stated that the codelist "FATESTCD" needs to be used for the variable
FATESTCD:

However, the newer versions of CDISC Controlled Terminology (CDISC-CT) does NOT contain
this codelist. Closer inspection of all the CDISC-CT of the last years show that it was deleted in
September 2016.

Instead, a number of disease-specific "FATESTCD" codelists has been developed by the CDISC-CT
team. All these obey to the pattern "–FATSCD", and the corresponding codelist for "FASTEST"
obeys to the pattern "—FATS". For example, for "COPD Findings About Test Code", the identifier
is "CPFATSCD" and the NCI code is "C122007".

In the wizard, when hovering the mouse over an entry, all the allowed values for that codelist is
displayed. For example, for "CPFATSCD":

This allows to easier find a suitable codelist.
It is not mandatory to select an "—FATSCD" codelist, one can also not select anything (or click the
Cancel button). One can then still later attach a codelist to both variables, and/or create a new one
and attach it.
Also, when selecting an "—FATSCD" codelist, also the corresponding "—FATS" codelist will be
loaded.

For example, when the "COPD Findings About Test Code" is selected, and OK is clicked, the
FAMH instance is created:

And the "COPD Findings About Test Code" is attached to FATESTCD:

And the corresponding codelist is attached to FATEST:

One can now start mapping as in the usual case, for example for all findings about medical history
of COPD.

More details are found in the tutorial "Working with the Findings About domain"

Logically Skipped Items in SDTM-QS

In some cases, the FDA publishes rules for SDTM that override existing SDTM rules (although also
the FDA can comment during public review periods) and sometimes even conflicts with them.
The newest example of this is the rule that for QS (Questionnaires) datasets, also data of logically
skipped questions must be submitted. See the latest "Technical Conformance Guide".
This is unproblematic when such skipped items are collected and marked as such in the database,
e.g. using a code "999". In most cases however (we checked with EDC and ePRO vendors), skipped
questions are not explicitly collected and stored in the study database, as there is no data from them
(logical, isn't it?), and because one can always do a lookup in the "skip rules" in order to see why a
datapoint is missing. Such skip rules can easily be defined in the define.xml, but it looks as the FDA
did not think about that.
So, this new rule forces SDTM generation tools to create records for non-collected data that usually
are not in the database, and thus also not in the ODM export.
If the database however also contains records for skipped questions (such as "999" records), there is
no problem at all.

In SDTM-ETL, we have solved this in an intelligent way. For the case that a questionnaire has "skip
rules", such as the "Disability Rating Scale" questionnaire, for which also an annotated CRF exists,
one can add a file "QS_skip_questions.txt" to the directory "QS_Skip_Questions". This file then
contains the information whether an item can be skipped, and will be used to generate "NOT
DONE" records for the skipped questions when that information is not explicitly available in the
source database and ODM.
The SDTM-ETL distribution already contains such an example file for the "Disability Rating
Scale". Here are some of the contents:

https://www.fda.gov/downloads/ForIndustry/DataStandards/StudyDataStandards/UCM624939.pdf
https://cdisc-end-to-end.blogspot.com/2019/03/logically-skipped-items-in-sdtm-qs.html
https://www.cdisc.org/system/files/members/standard/foundational/qrs/SDTM QS - DRS v1 Public Domain.pdf
https://www.cdisc.org/system/files/members/standard/foundational/qrs/SDTM QS - DRS v1 Public Domain.pdf
https://www.cdisc.org/system/files/members/standard/foundational/qrs/DRS v1 Annotated CRF.pdf

Fields in the file are separated by a vertical bar "|". The fields are:
- Field 1: The QS dataset identifier
- Field 2: The question identifier (OID of the ItemDef in the ODM file – for populating

QSTESTCD)
- Field 3: The question label (for populating QSTEST)
- Field 4: The category (for filling QSCAT)
- Field 5: Boolean value whether the question can be skipped or not:

when the value is "false", no "NOT DONE" record will ever be created for that item, as it
could never be "logically skipped".

For example, the line:

Indicates that for the dataset with identifier "DRS:QSDRS" (i.e. the QSDRS dataset in study
"DRS") has an item "ED104_3" (the test code), with test name "ED1-Know Meal Times", with the
category (QSCAT) "FEEDING" is an item that can be skipped under certain circumstances.
If the software then detects that for a certain subject/visit combination, there is no data for item
"ED104_3", it will generated a record with QSORRES empty, QSSTAT="NOT DONE" and
QSREASND="LOGICALLY SKIPPED ITEM".

This file can contain information for more than one QS datasets. For example:

As one may already guess, lines starting with a "#" are comment files and will be ignored by the
software.

If the software finds more than one file, or none at all, in the directory "QS_Skip_Questions", it will
ask which one to use, and/or allow the user to select such a file.

In the SDTM-ETL, the ODM file with metadata for the "Disability Rating Scale" questionnaire,
when loaded looks like2:

The SDTM-ETL script for QSTESTCD looks like:

Mapping using ODM element ItemData with ItemOID ED102_1 - value from attribute ItemOID
Generalized for all ItemGroups within the Form
Except for: IG.HEADER
Generalized for all Items within the ItemGroup
$QS.QSTESTCD =
xpath(/StudyEventData[@StudyEventOID='SE.DRS']/FormData[@FormOID='FO.DRS']/ItemGrou
pData[not(@ItemGroupOID='IG.HEADER')]/ItemData/@ItemOID);

Stating an iteration over all items in the form, except for the items in the "header". It was
automatically created after a simple drag and drop and using the wizard:

2 A copy of the "Disability Rating Scale" ODM file and the corresponding SDTM-ETL define.xml file that were used
for testing this new feature, can be obtained upon request.

https://www.cdisc.org/system/files/members/standard/foundational/qrs/SDTM QS - DRS v1 Public Domain.pdf

With the one exception generated by clicking "Except for …" in "Generalize for all ItemGroups":

The script for "QSORRES" was generated in a very similar way and looks like:

It uses the "decode()" function as the answers in the database are stored as numeric values, like "0"
for "Always", "1" for "Most of the time", "2" for "Some of the time" and "3" for "Never". Storing
the answers in the database as numeric values makes sense, as these numbers represent a score,
from which the total score is calculated.
This can be easily visualized using the menu "View – Item Associated CodeList":

We also need take care that there is a "dummy" mapping specified in QSSTAT and QSREASND, as
these will be automatically populated in a post-mapping run, i.e. this run will override the values in
QSSTAT and QSREASND:

When we now run "Transform – Generate Transformation Code" followed by "Execute
Transformation Code", the system detects that there is a study-specific QS dataset instance defined,
and displays an additional checkbox "Generate 'NOT DONE' records for QS datasets":

If we leave this checkbox unchecked, nothing special will happen, and our QSDRS dataset will
look like:

QSSTRESN (and thus also QSSTRESC) contain the numeric (coded) values from the source
database, whereas QSORRES contains the text value of the answer. This is also as described in the
CDISC document. Remark that "skipped questions" according to DRS rules are … skipped, and do
not appear in the dataset.

When however the checkbox "Generate 'NOT DONE' records for QS datasets" is checked:

https://www.cdisc.org/system/files/members/standard/foundational/qrs/SDTM QS - DRS v1 Public Domain.pdf

The result is:

We now see that there are "NOT DONE" records for ED102_4 to ED102_6 although the original
ODM dataset does not contain any information about these "skipped questions". These records have
been generated "post-mapping" from the information in the file "QS_skip_questions.txt".

Again, if your dataset also contains information about questions that were not asked or were
skipped (e.g. as "999" records), all this is not necessary.

Validation of "Study-specific" domains only

With some new requirements on the define.xml, the template "define.xml" does not always contain
the necessary information to go through validation without warnings. Therefore, we introduced the
feature that when validation is requested, the user can choose between validating the "study-specific
instances" of the domains/datasets (i.e. the non-template rows) and validating everything. In most
cases, the user will want to validate the "study-specific domains" only:

It is then asked whether the define.xml is in the context of a regulatory submission. The reason for
this is that the rules for define.xml are slightly different when it is used for a regulatory submission
(e.g. SASName is required):

Most of the rules for define.xml are expression as so-called Schematron rules. Schematron is an
open, international standard for validation of XML files developed by the World Wide Web
Consortium (w3c). The Schematron rules for define.xml have been developed by some of the
members (including ourselves) of the CDISC define.xml development team.
Using the button "Select/Unselect individual Schematron rules" allows to select / unselect
individual rules for define.xml.

Non-Standard variables and domains in define.xml 2.1

In define.xml 2.0, there was no standardized mechanism to flag non-standard variables (NSVs). So,
in SDTM-ETL 3.2 and earlier, we marked them with "Role=SUPPQUAL". This information was
then used to color them differently in the SDTM/SEND table on the right side of the screen, and to
"split them off" to a SUPPxx dataset at execution time (when the datasets are generated) when
desired by the user, and to generate a "submission-ready" define.xml including the SUPPxx dataset
descriptions.
Also, define.xml did not have a mechanism to mark sponsor-defined domains and datasets. By
convention, the two-character name of such domains and datasets started with either "X", "Y" or
"Z".

In Define-XML 2.1, a new attribute was added to the "ItemRef" and "ItemGroupDef" elements: the
"def:IsNonStandard" attribute. So, for example, the NSV "Completers Population Flag" (COMPLT)
in the "Demographics" domain is defined by:

This has the advantage that the user can now assign the value for the "Role" himself.

Similarly, for a sponsor defined domain/dataset:

http://schematron.com/

This is all done in the background by the software, there is nothing special or new the user has to
do.

Even better exploitation of SDTM (and CDASH) annotations in the ODM
(as of December 2021)

SDTM-ETL had already great features for exploiting SDTM (and CDASH) annotations in the
ODM. Items that have such an annotation are displayed with a cyan background color, and upon
pointing the mouse, the suggested SDTM variable is displayed as a tooltip:

This information is of course also displayed when using the menu “View - Item Details”:

Also, when selecting an SDTM/SEND cell, all the “hot candidates” in the ODM tree are marked
(with a rectangle on the “traffic light”), such as e.g. here for LBORNRLO (lower limit):

And when using the menu “Navigate - Find hot SDTM candidate in ODM tree”, one can even use a
wizard allowing to further refine the search, e.g.:

New is that also that “marking a hot candidate” can be done the other way around: when an item in
the ODM tree is selected that is annotated with SDTM/SEND information, the corresponding cell in
the SDTM/SEND table is highlighted (green when no mapping is already available, yellow when a
mapping is already available), and the system automatically scrolls to the corresponding cell. For
example, when clicking the item “Laboratory Name” in the ODM tree:

the system highlights “LBNAM” cell on the right, and scrolls to it.
This new feature will further enormously help to exploit SDTM and also CDASH annotations for
mapping with SDTM: the user then only needs to drag-and-drop and follow the wizards, which then
automatically create the mapping script.

New functions in the mapping script language

Some new functions have been added to the scripting language (see document "
Scripting_language_specification_v_4_0 .pdf"), including for using RESTful web services (see next
section), and the separate tutorial "Working with RESTful Web Services".

Another useful function is the new "alias()" function, taking two arguments. The first argument is
the OID of an Item, ItemGroup, Form or StudyEvent from the source data, the seconds the
"Context" of the alias.

In ODM, the "Alias" element is used to define the synonym for an item in another context.
Typically, this is used to assign the item a code, like a SNOMED-CT, RxNorm or LOINC code (the
latter especially when the item represents a test).

For example, the protocol has stated that the "basic metabolic panel" lab tests must be executed.
This consists of:

https://s.details.loinc.org/LOINC/24320-4.html?sections=Comprehensive
https://s.details.loinc.org/LOINC/24320-4.html?sections=Comprehensive
https://s.details.loinc.org/LOINC/24320-4.html?sections=Comprehensive

This is represented in the ODM study design e.g. as follows:

i.e. each data point definition ("ItemDef") also contains an "Alias" element with "LOINC" as the
"context", and the LOINC code as the name. This means that e.g. for "blood urea nitrogen", in the
context of LOINC, the item is being defined as the test with code 6299-2.

The "alias()" function allows a lookup in the metadata for a data point, and to retrieve a code.
It has two arguments, the first being the ODM Item (usually using the XPath to it), the second being
the context (i.e. the library of system, in the current case "LOINC").
This is especially interesting for e.g. populating "LBLOINC", as shown in the following mapping
script:

https://s.details.loinc.org/LOINC/6299-2.html

The line with "$TEMP = " picks up the OID of the test (an iteration over all lab tests is performed),
and the "alias()" function then retrieves the value of the LOINC code from the metadata in the
source ODM file.
The result is:

Working with RESTful Web Services

More and more, the use of RESTful web services for automating tasks in software is becoming
custom, also in clinical research. Also CDISC is developing a number of RESTful web services for
querying the CDISC Library metadata repository, and provides an RESTFUL-WS API for the
CDISC Library.

How one can use the CDISC Library and its API is explained in a separate document "Working
with the CDISC Library in SDTM-ETL".

In the field of RESTful web services for clinical research, XML4Pharma and the National Library
of Medicine have been pioneers: both provide a number of free RESTful web services that can be
used in software applications in clinical research.

SDTM-ETL 4.0 comes with a number of pre-defined functions that use these RESTful web
services, i.e. metadata information is requested from the XML4Pharma server about SDTM
variables or LOINC codes.

https://www.cdisc.org/cdisc-library
https://www.cdisc.org/cdisc-library/api-documentation
https://www.cdisc.org/cdisc-library/api-documentation
https://www.cdisc.org/cdisc-library/api-documentation
https://www.cdisc.org/cdisc-library/api-documentation
http://xml4pharmaserver.com/WebServices/index.html
https://www.nlm.nih.gov/
https://www.nlm.nih.gov/

For example, the function:

rws:testNameFromTestCode(String testCode, String variableName) can be used to obtain the "test
name" (value for –TEST) for an SDTM variable that represents a test code (value for –TESTCD).
For example, the function

rws:testNameFromTestCode("ALB", "LBTESTCD") will return "Albumin"

In a mapping script for LBTEST, this e.g. looks like:

And the result after execution for the LB dataset:

With "Erythrocytes" and "Leukocytes" being retrieved from "RBC" and "WBC" using the RESTful
web service.

Another such pre-defined function is:

rws:sdtmLabel(String sdsVersion, String sdtmVariable)

returning the "label" for the SDTM/SEND variable and SDS version (1.1, 1.2, 1.3)

For more details about these and all other predefined functions, please see the separate "Using
RESTful Web Services" document.

One can however also use any other RESTful web services that are based on "HTTP GET", e.g.
company-internal RESTful web services, or RESTful web services made available by the National
Library of Medicine, e.g. for working with RxNorm medication numbers and codes.

For example, for getting the name of the medication with the RxNorm number "131725", one could
use the NLM RESTful web service "properties" described by the NLM as:

https://www.nlm.nih.gov/
https://www.nlm.nih.gov/
https://rxnav.nlm.nih.gov/RxNormAPIREST.html
https://rxnav.nlm.nih.gov/RxNormAPIREST.html
https://rxnav.nlm.nih.gov/RxNormAPIREST.html#uLink=RxNorm_REST_getRxConceptProperties

You can test this in the browser for RxNorm number 131725 by using:
https://rxnav.nlm.nih.gov/REST/rxcui/131725/properties

Delivering the xml:

However, you can also use this RESTful Web Service in your own mapping scripts, e.g. in
"CMTRT" when the RxNorm medication number was e.g. retrieved from an electronic health
record, or was collected as such on the CRF.

The mapping script would then be like:

$RXNORM = xpath(….);
$RWSQUERY = concat('https://rxnav.nlm.nih.gov/REST/rxcui/', $RXNORM, '/properties');
$CM.CMTRT = doc($RWSQUERY)/rxnormdata/properties/name;

In the mapping script editor:

https://rxnav.nlm.nih.gov/REST/rxcui/131725/properties

Where the "doc" function means that an XML document is obtained when the $RWSQUERY is
executed, and the "/rxnormdata/properties/name" the path (XPath) in the result document is.

This e.g. leads to the CM record for the case of RxNorm=131725:

Limitation: at this moment, only RESTful web services that use HTTP or HTTPS and for which no
authentication is necessary are supported.

Remark that it is always wise to store the "base" of the RESTful web service (in our case
"'https://rxnav.nlm.nih.gov/REST/rxcui/") in a "GLOBAL" variable for easy reuse.

For further details and possibilities, see the separate "Using RESTful Web Services" document.

Implementing the CDISC "LOINC-to-SDTM-LB" mappings

CDISC recently published the "final" version of a mapping between 2000+ LOINC codes (limited
to the most popular test codes for laboratory tests, excluding microbiology tests) to SDTM-LB
variables. The publication was in the form of an Excel file, which is of course not very useful for
use in SDTM dataset generation, See the CDISC website for more details.

Therefore, we implemented the published mapping as a RESTful web service. We are currently also
extending that mapping for a few thousand more laboratory LOINC codes, as out experience is that
2000 codes is a much too small sample (LOINC has over 93,000 codes).
Also, we developed mappings for the newly published COVID-19 test codes to the MB domain,
and a set of LOINC codes for vital signs to the VS domain.

We then developed functions that use the RESTful web service for the LB domain use case.

The function that you will be using the most, is the function:

loinc2sdtmlb(string loinccode, string variablename)

The first parameter is the LOINC code, e.g. "1751-7" for "Albumin [Mass/Volume] in Serum or
Plasma

The second parameter is the SDTM-LB variable you want the mapping value for.

For example, the by CDISC published mapping for LOINC code 1751-7 is:

SDTM variable SDTM variable value
LBTESTCD ALB
LBTEST Albumin
LBSPEC SERUM OR PLASMA
SUPPLB.LBPTFL Y
SUP-
PLB.LBRESTYP

MASS CONCENTRATION

SUPPLB.RSLSCL QUANTITATIVE

So, the function call
loinc2sdtmlb('1751-7', 'LBTESTCD') will return 'ALB'
loinc2sdtmlb('1751-7', 'LBTEST') will return 'Albumin'
loinc2sdtmlb('1751-7', 'LBSPEC') will return 'SERUM OR PLASMA'
loinc2sdtmlb('1751-7', 'SUPPLB.LBRESTYP') will return 'MASS CONCENTRATION'

And so on. Variables for which no mapping was provided (e.g. for LBMETHOD in the case of
LOINC code 1751-7) will return an empty value.

One can understand that this function, when correctly implemented, can enormously reduce
the mapping effort for the LB domain and datasets, at least when the LOINC code of each of
the tests is available.

An example of a set of mappings using this function (together with "Conventional" units to "SI"
units conversion), where several of the variable values are automatically generated from the LOINC
code can be found in the define.xml example file under

https://www.cdisc.org/standards/terminology/controlled-terminology
http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html

/TestFiles/define_2_0_mappings/ CES_LB_define_loinc2cdisc_testing.xml

"US Conventional"- SI Unit conversions using the NLM RESTful web service

Performing unit conversions, especially for laboratory test results, has always been difficult,
requiring a lot of programming. Such unit conversions are typically necessary for the generation of
xxSTRESN values in SDTM and SEND. Using the RESTful web services developed by the
National Library of Medicine (NLM), such conversions can be automated without programming.
The new NLM RESTful web services do not only support classic conversions, such as from inches
to centimeters, but also "US conventional units" to "SI units" conversions and vice versa, when
either the LOINC code or the molecular weight is known. For the LB domain, the LOINC code of
the test needs to be submitted anyway, so one has it already, making such automated conversions
and population of the LBSTRESN variable very easy.

The functions for doing unit conversions using the NLM RESTful web service are further explained
in the separate user manual "Performing Unit Conversions in SDTM-ETL".

CDISC Library

A number of the validation features (menu "Validate") use the CDISC Library API. The latter
recently changed the authentication mechanism, from username and password, to "API key". For
more details about the new authentication mechanism, please see the CDISC website.
As a consequence, we have adapted the software.
If you would like to use the "CDISC Library Validation" features, you will need such an API key,
which is stored in the "properties.dat" file as a parameter value pair with the parameter name being
"cdisclibraryapikey" (lower-case). For example:

Define.xml 2.0 to 2.1 transformation

On request of a number of customers, we added the feature enabling to fully automatically
transform define.xml v.2.0 files to v.2.1. This can be done either from within SDTM-ETL, as in
“stand-alone” mode.
This new feature is described in the separate manual “Transforming define.xml 2.0 to define.xml
2.1” which is also available on the SDTM-ETL website.

Bug fixes

- The element "BasicDefinitions" was, when present (e.g. using "Insert – MeasurementUnit
definitions from ODM into define.xml") not automatically removed when "cleaning the
define.xml" e.g. using "File – Save cleaned define.xml". This has been fixed.

- In case the location of the datasets is stored in the define.xml ("def:leaf") and the path to
them is referencing a directory, and a "SASDatasetName" is stored, then the validation of
the define.xml (using "Validate – define.xml) gave an error stating that the filename does not

https://ucum.nlm.nih.gov/ucum-service.html
https://ucum.nlm.nih.gov/ucum-service.html
https://www.cdisc.org/cdisc-library-getting-started-all
http://www.xml4pharma.com/SDTM-ETL

correspond to the SAS dataset name. This has been fixed in the schematron.

Limitations

- Pinnacle21 does not support define.xml 2.1. As such, using Pinnacle21 in combination with
define.xml 2.1 does not make sense. We hope that the CDISC CORE project delivers results
early in 2022, so that the clinical research can finally switch to a much better validation
software that does not produce the large numbers of false positives that Pinnacle21
produces.
As soon as the open source CDISC CORE software becomes available, it will be
implemented by us in SDTM-ETL.

https://www.cdisc.org/core

