Creating mappings for the SV (Subject Visits) domain

Although Fred Wood, one of the authors of the SDTM Implementation Guides has once stated „Creating Trial Design tables can be as much of an art as it is a science“, it is pretty easy when using SDTM-ETL. Essentially, a „visit“ is a „StudyEvent“ in ODM. So if we map „StudyEvent“ to „VISITNUM“ (which is the key in the corresponding TV domain), we are essentially done. If there are repeating visits (as in many oncological studies), one however need to do a bit more.

For our „CES“ study, the study design tree is:

containing 5 planned visits. However, is the visit „Adverse Event“ really a planned visit? In the message pane at the bottom of the screen we see that the form „Adverse Event Form (ACRO)“ is „repeating“ so this lets us doubt a bit. It could be that this „StudyEvent“ is just an „artificial“ one that is „triggered“ when an adverse event is observed, and is meant to collect all adverse events independent on when they occurred. So we need to look into the protocol …

Our suspicion is further strengthened by the design of the StudyEvent:
We will further develop the mapping for SV assuming that the StudyEvent "Adverse Events" is not a planned visit, and later (when generating the AE domain mapping) explain how VISITNUM must then be handled there (as an "unplanned visit").

First drag and drop the "SV" row from the template to the bottom of the existing table. The following dialog is displayed:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Variable</th>
<th>Variable</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
</tr>
<tr>
<td>SV</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
</tr>
<tr>
<td>CES:DM</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
</tr>
<tr>
<td>CES:SV</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
</tr>
</tbody>
</table>

Copy Domain SV

- Copy STUDYID from loaded ODM
- Copy DOMAIN from originator
- Automatically add USUBJID
- Automatically add SEQ

[OK] [Cancel]
and accept the choices already checked by the wizard, as we want to have the mappings for STUDYID, DOMAIN and USUBJID be generated automatically. Clicking „OK“ results in a new row in our table:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Variable</th>
<th>Variable</th>
<th>Variable</th>
<th>Variable</th>
<th>Variable</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
<td>SUBJ</td>
<td>DM_RFSTDTC</td>
<td>DM_RFENDTC</td>
</tr>
<tr>
<td>SV</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
<td>SV_VISITNUM</td>
<td>SV_VISIT</td>
<td>SV_VISITDY</td>
</tr>
<tr>
<td>CES:DM</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
<td>SV_VISITNUM</td>
<td>SV_VISIT</td>
<td>SV_VISITDY</td>
</tr>
<tr>
<td>CES:SV</td>
<td>STUDYID</td>
<td>DOMAIN</td>
<td>USUBJID</td>
<td>SV_VISITNUM</td>
<td>SV_VISIT</td>
<td>SV_VISITDY</td>
</tr>
</tbody>
</table>

In domains where there is more than one record, we must **first** define the looping structure. This means that we need to define over which of the SDTM variables and iteration will be done in order to generate the data sets. It often corresponds to the statement in the SDTM-IG like „on record per study per visit“.

Most of the domains in the template have already a proposed looping structure, but one should always inspect it and adapt it if necessary to its own study structure.

Viewing and editing the properties (like the looping structure) of the domain can be either done by a double-click of the first cell of that domain (in this case the cell with „CES:SV“) or by selecting any cell in the row and then using the menu „Edit – SDTM Domain Properties“. This results in the following dialog:

![Edit properties for SDTM Domain: CES:SV](image)

and at the bottom, after having clicked the „validate“ button:

![Validate](image)

stating „one record per VISITNUM per USUBJID“.

1 We have hidden all other rows from the template using the menu „View – View/Hide Domains“
As this is exactly the structure that is needed, it is not necessary to change the looping structure. We do however still need to set the domain keys. In the past (pre-SDTM-1.4), the SDTM-IG often made a proposal for the domain keys, which was copied by implementors without any considerations that the proposal might not be what is needed. Therefore, CDISC does not publish any recommendations for the „domain keys“ any more, and one must add them one self.

Click the button „Set domain keys and sequence“. The following dialog is displayed:

![Add key variables and define their sequence dialog](image)

One can now add variables that are the „natural keys“ of the domain (see SDTM-IG 3.2, section 4.1.1.9 „Assigning Natural Keys in the Metadata“). In our case, most logical is:

![Add key variables and define their sequence dialog with variables](image)

This choice will generate „KeySequence“ attributes in the underlying define.xml structure for „STUDYID“, „USUBJID“ and „VISITNUM“ ItemRef elements in the ItemGroupDef „SV“.

Click „OK“ until returning into the main window.

In the study design tree, collapse or expand all tree nodes until one sees the StudyEvent nodes:
Now drag-and-drop one of the StudyEvent nodes (it doesn't matter which one) to the cell „SV.VISITNUM“. The following wizard is displayed:

This selects a single StudyEvent, but we want the mapping to be applicable to all StudyEvents, except for the „Adverse Events“ StudyEvent, as the latter is not a real planned visit in the sense of SDTM. So we check the checkbox „Generalize for all StudyEvents“:

which makes the buttons „Except for …“ and „Only for ...“ available. As we need to exclude the „Adverse StudyEvent“ StudyEvent, we need to click „Except for ...“ and
check „AE- Adverse Event“:

Clicking „OK“ several times generates the mapping script:

```
# Mapping using ODM element StudyEventData using value from attribute StudyEventOID
# Generalized for all StudyEvents
# Except for: AE
#SV.VISITNUM = xpath(//StudyEventData[not(@StudyEventOID='AE')]/@StudyEventOID);
```

stating that we will consider all „StudyEventData“ in the ODM „ClinicalData“ file except for the one with the StudyEventOID „AE“.

Testing this out on our test set with clinical data for two subjects leads to:

```
<table>
<thead>
<tr>
<th>CES:DM</th>
<th>CES:SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDYID</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>CES</td>
<td>SV</td>
</tr>
</tbody>
</table>
```

which is not what is wanted\(^2\) as we need a number for VISITNUM. So we still need to assign numbers to each of our visits. This can be done by a little amount of editing of the mapping script, e.g. like:

\(^2\) This would however already be a perfect mapping for the variable „VISIT“ (visit name)
Also note that the comment lines (starting with a `#`) have been generated automatically – you can of course edit them.

And testing on the clinical data leads to:

Remark: the assignment of the „visit number“ is completely arbitrary, but the order needs to correspond to the „natural order“ given in the protocol, i.e. that the „baseline visit“ normally comes before the „Week 1“ visit etc.. However, the numbers must not be subsequent by default: so if one would assign them as being „100“, „200“, „300“ and „400“, this would be perfectly OK (also see the remark about repeating visits later in this chapter). They however MUST correspond to VISITNUM in the records of the „trial visits“ (TV) domain.

For the variable „VISIT“ visit name, we can just copy-paste the first line of the script for VISITNUM and add an extra line for the assignment to „VISIT“:
which leads to following results:

We can now also populate SVSTDTC, SVENDTC, SVSTDY and SVENDY. Note that these variables are permissible and should only be populated in case they were collected. So one should not try to derive them from other information. In our case, the visit date was however collected as „Visit Date“ (OID „I_VISIT“) in the ODM, and this is done in the same way in each visit:

So drag-and-drop the item „Visit Date“ to the cell „SV.SVSTDTC“. The dialog shows up again asking what we want to do exactly:
The information about „generalizing for all StudyEvents“ and the exception for the „Adverse Event“ is still there. If it isn't, one should add it again. This leads to the mapping:

```
# Mapping using ODM element ItemData with ItemOID I_VISIT
# Generalized for all StudyEvents
# Except for: AE
$SV_SVSTDTC = xpath('StudyEventData[not(@StudyEventOID=\"AE\")]/FormData[@FormOID=\"F_BASELINE\"]/ItemGroupData...)
```

Wait a minute: there is no form „F_BASELINE“ in the StudyEvent „WEEK_1“! So we need to find something better.
If we use the menu „Navigate – Next Instance“ we see that „Visit Date“ occurs in every visit, but in different forms, but always in the ItemGroup „Common“. However, it can also occur several times in different forms in the same visit, so we must always take the first occurrence.

We do start again from the drag-and-drop and get:
Check the checkbox „Overwrite existing mapping“. This leads again to:

and now also check the checkbox „Generalize for all forms“, stating that the „Visit date“ can occur in any form³.

This leads to:

³ If there is no „Visit Date“ in every form, we should here again exclude the forms that haven't got the „Visit date“, or using the button „Only for“ include the ones that have.
If we would now execute all the mappings for the domain, we would get an error ("A sequence of more than one item is not allowed as the first argument of string()"). Reason for this is that the visit date, as we have defined it here, occurs several times in the same visit (i.e. on different forms). We do however only want the first occurrence. So we rewrite the mapping script as:

In our scripting language, a pair of square brackets means a condition. The condition [1] means „take the first one“, [2] means „take the second one“ and [last()] means „take the last occurring one“. This leads to the following results:
The same can now be done for SVENDTC, as start date and end date of the visit are always identical, or we can just use:

```
SVSTEDTC = 4SV.SVSTDTC;
```

as SVSTEDTC has been defined before (i.e. more to the left in the table).

The variable SVSTEDY and SVENDY can be mapped using SVSTEDTC and SVENDTC, and using „datediff“ in the same way as was done in the mappings for „AGE“ and „DMDY“ in the demographics domain. For this, we need the value for „RFSTEDTC“ (reference start date again). We can either copy it from the mapping for RFSTEDTC in the domain, or drag-and-drop it from the „baseline visit – Visit date“ again (attention: one should not have any „Generalize for ...“ checkboxes checked in this case).

Creating global variables

There is however a smarter way...
We will need RFSTEDTC and RFENDTC over and over again in many domains for deriving either xxDY values, or „BEFORE“, „AFTER“ values for xxSTRF („Start relative to reference period“) and xxENRF („End relative to reference period“) variables.

So why not make RFSTEDTC and RFENDTC „global“?

In SDTM, one can set global variables for reuse in any domain using „Insert – Global Subject Variables Domain“. This leads to:

This is a very special domain (it will be removed from the „clean“ define.xml when generating a „submission-ready“ define.xml) to store global variables that we can then use in „read-only“ mode in any of the mappings of our domains.
This „Global“ domain typically contains things like mappings for RFSTDTC (reference start date) and RFENDTC (reference end date). After selecting any cell in the „CES:GLOBAL“ domain, one can add variables by using the menu „Insert – New SDTM Variable“, leading to the wizard:

![Image of the wizard](image)

It explains that the identifier (OID) should be unique, i.e. it should be different from any OID already in the SDTM. So we can use „RFSTDTC“, but not „DM.RFSTDTC“.

For a global variable „Reference Start Date“, we choose „RFSTDTC“. So:

![Image of the wizard with RFSTDTC](image)

and click OK to finalize the process. This leads to:

![Image of the message box](image)

and:

![Image of the table](image)
The global variable can now be mapped in the same way as any SDTM variable, e.g. using drag-and-drop from the first visit date of our study design tree:

leading to:

and the mapping:
We now return to our mappings for the SV domain.

For SV.SVSTDY we can now simply use:

```sql
$SV.SVSTDY = datediff($SV.SVSTDTIC, $RFSTDTIC) + 1;
```

as $SV.SVSTDTIC has been defined in the same domain before, and $RFSTDTIC is a global variable. The „+1“ is necessary as the SDTM does not allow a „day 0“: the first day in a study is „day 1“ and the day before it „day -1“.

This results into:

The same can now be done for the variable SVENDY.

Notice that the variable SV.VISITDY contains the „planned“ day of the visit, not the actual one. So we will either need to copy it from the study design domain TV (trial visits), or hardcode it (using an if-elsif-else structure) from the information in the protocol.

Some important remarks

You may have noticed that when testing the mappings, we have used the menu „Transform –

4 Conflicting with everything I learned in mathematics in primary school ;-)
5 Essentially, VISITDY should NOT appear in „Subject Visits“, as it is not „collected“. If a reviewer would like to know what the planned visit day was, his review tool should enable him to jump to the TV domain.
Generate Transformation (XSLT) Code ...“ and have not performed any „local“ testing using the button „Test – Transform to XSLT“ in the mapping editor. The reason is simple: when using the latter, the system is not knowing about any looping variables (in our case VISITNUM), nor is it knowing about any variables that were defined before, nor about global variables.

In our example study, we would now also like to map the „unplanned visits“. The amount of collected clinical data we have so far (only one adverse event) does not provide us the necessary information yet on whether the AE was collected during a normal visit, or whether an additional (unplanned) visit was executed. Using „View – Clinical Data“ for the „Visit Date“ of the „Adverse Event“ StudyEvent gives us:

![View Clinical Data](image)

and „2010-03-13“ is also the visit date of the „DIARY“ visit. If AEs were always collected during planned visits, we will not need any additional records in the SV domain.

Executing mappings for a single, selected domain

Currently we have developed mappings for as well the DM as for the SV domain. When testing, we each time see the results for both these domains. This is OK here, as both contain a small set of records, and generating the XSLT and executing it does not take much time. For other domains however that have more records, we often would like to execute the mappings on the „current“ domain only, even if mappings for other domains are also loaded.

As of version 3.0, only executing the mappings for a single domain is possible. For doing so, first use the menu „Options - Settings“.

This gives:
Now check the checkbox „Generate/Execute XSLT for user-selected domains only“:

![Checkbox](image1.png)

and click „OK“. The next time one uses the menu „Transform – Generate Transformation (XSLT) Code“ an additional dialog will be displayed:

![Select domains/datasets for transformation](image2.png)
allowing to select the domains for which the XSLT will be generated and the mappings executed.

In the case we select „CES:SV“ this will lead to:

![Image of CES:SV table]

Important remarks:

This study did not have any unplanned visits for any of the subjects. If your study has such, you also need to have these in your SV dataset. The following rules then apply:

- VISITNUM must be populated in such a way that it can be sorted in the correct chronological order. For example, if you have visits with VISITNUM being „3“, „4“ and „5“ and the unplanned visit was after visit 4, you may assign a VISITNUM „4.1“ for the unplanned visit. If you had planned visits „30“, „40“ and „50“, and the unplanned visit came after visit „40“, you may assign the number „41“ for the unplanned visit. We do however recommend using the former method (with the decimal point) as the tools used by the FDA do not support the second method, though it is fully legal.

- VISIT can be left blank or can be filled with e.g. „UNSCHEDULED“. If you plan to submit to the FDA, also test what you filled in here using the latest version of OpenCDISC, as the agency is using this tool. Unfortunately, earlier (but also newer) versions of OpenCDISC made some invalid assumptions on how this should be dealt with. If you get an error using OpenCDISC, you might either want to adapt to what comes out of OpenCDISC (even if you are sure that you did it the right way), or make a notice about the (false positive) error in the reviewers guide.

- VISITDY must be left empty, as this is the planned study day.

- SVSTDTC, SVENDTC, SVSTDY and SVENDY must be populated as usual.

- SVUPDES must be populated with the reason for the unplanned visit.

This is well explained in the different SDTM Implementation Guides e.g. in section 4.1.4.5 („Clinical Encounters and Visits“) of the SDTM-IG 3.2 (for SDTM 1.4).

6 See e.g. http://www.opencdisc.org/forum/sd1023-check-isnt-designed-properly