
SDTM-ETL 4.4 User Manual and Tutorial

Author: Jozef Aerts, XML4Pharma

Last update: 2024-09-27

Troubleshooting: Most common mistakes and errors

Table of Contents

Table of Contents ... 1
Introduction.. 1
Most common error messages during "compilation" of the mapping scripts 1

- "assignment statement needs to end with a semicolon".. 2
- "missing closing bracket in 'if' statement" .. 2

Most common error messages during execution of the mapping scripts ... 3
- "Typed" versus "Untyped" ODM clinical data. .. 3
- "Variable xxx has not been declared (or its declaration is not in scope)"..................................... 5
- "No mapping provided for a 'looping' variable" ... 6
- "A sequence of more than one item is not allowed as the first argument of fn:string()"............ 10
- "Invalid byte 1 of 1-byte UTF-8 sequence".. 12

Further bad practices.. 12
- Sorting keys in the define.xml for variables that require post-processing.................................. 12

Introduction
The SDTM-ETL software makes development and execution of mappings between collected data
(usually as CDISC-ODM) and SDTM or SEND easy. But still, users need to take decisions, and use
the many wizards and dialogs in a wise way. In some cases, automatically scripts must be extended
or adapted, or (very seldom) written from scratch.

Making mistakes is human, and also here, mistakes can be made, which lead to errors or unexpected
results. The current document tries to make an inventory of most common mistakes and errors and
how to either avoid or correct them.

Usually, the SDTM-ETL software will report such errors during execution of the mapping scripts,
when using the menu "Transform - Generate Transformation (XSLT) Code for …", or later, after
execution was started. We will explain most of the common error messages, and discuss measures
to be taken to correct the scripts or the mapping strategy.

This document will regularly be updated with comments from our users.

Most common error messages during "compilation" of
the mapping scripts
The mapping scripts are, when the menu "Transform - Generate Transformation (XSLT) Code for

…" is used, transformed into XSLT (XML Transformation Language), which is then executed on
the ODM-XML file with clinical data.
During generation of the XSLT, the software already checks a number of things, and the validity of
the generated XSLT.

Here are the most common error messages generated:

- "assignment statement needs to end with a semicolon"

This is an obvious error that can occur when automatically generated mapping scripts have been
edited, or written developed from scratch. When we then look into the script for VSTESTCD at line
8, we find:

Where we see that a semicolon, which is needed to indicate the end of a programming statement is
failing. One can e.g. see in line 10 what is needed.
In such a case, one can use the "Ignore" button, in which case the software will try to automatically
correct the generated XSLT, but there is no guarantee that this will always work.

- "missing closing bracket in 'if' statement"

Is another obvious error, e.g.

Which can easily be retraced in the mapping script:

https://en.wikipedia.org/wiki/XSLT

- "variable name needs to start with a '$'"

Just like in Perl, PHP and JavaScript, variables are denoted by starting with a dollar ($) character.
This is a consequence of our mapping script language being "untyped", meaning that variables are
not explicitly assigned a data type (like "string", "integer", …), like e.g. in Java. See here for some
explanation.
Also here, as the line number is provided, this error is easy to trace back:

-

Most common error messages during execution of the
mapping scripts

- "Typed" versus "Untyped" ODM clinical data.

Once the XSLT generated, it can be applied to a file with clinical data in ODM format.
One must remark here that there a two "flavors" of ODM "ClinicalData", I.e. "untyped" and
"typed".

https://www.quora.com/Why-is-the-dollar-sign-used-for-variable-declaration-in-some-programming-languages-and-not-others

Most EDC systems export ODM clinical data in the "untyped" flavor, which is characterized by
having the value of the data point in a "Value" attribute. For example:

Some (but less common) EDC systems however export the clinical data in the "typed" flavor, which
is characterized by that the name of the "ItemData…" element has the data type in it, and that the
value of the data point comes as XML "text content". For example:

Therefore, when one starts the execution, the system will request to indicate which "flavor" is used
in your dataset with clinical data:

One should then select the correct "flavor". If one is 100% sure and does not want that the systems
asks for it each time the mappings are executed, check the checkbox "Never ask again in current
session".
One can also preset the choice in the "properties.dat" file when one will always work with files
from the same (type of) EDC system, e.g.

indicating that the "default" is "typed ItemData".

Now, what happens if one makes the false choice?

In such a case, nothing special will happen, no errors will be generated, the mappings will just

execute, but as, at least for the variables for which the value is extracted from the ODM file with
clinical data (all these where an "xpath(…)" statement occurs in the mapping script), no
SDTM/SEND values will be generated. In the best case, a message:

will appear.

So, in the case that this message appears, one should first always ask oneself "is my clinical data in
the 'untyped' or in the 'typed' flavor?" and "did I make the right choice when the system asked be
about it?". There can of course also be other reasons why the generated datasets are empty.

- "Variable xxx has not been declared (or its declaration is not
in scope)"

This error message means that a variable was used (i.e. read in an operation), but the variable was
not declared before. E.g.:

where in the mapping script we find:

where we see that the variable "$TEST" is used in an "if" statement, but was never declared before.
In this case, it is obvious that "$TEST" must be replaced by "$CODEDVALUE".
Rather often, this error is at the end of the script, in the last assignment, e.g.:

Which is less obvious as the script is:

Which seems to be correct ...
Reason is that it is expected that the last statement in the mapping script always does the assignment
to the SDTM/SEND variable that the script is meant for. In this case, the script is for
VS.VSTESTCD, so the last assignment should be:
$VS.VSTESTCD = $NEWCODEDVALUE;

P.S.: there is no need that variable names are all uppercase, except for the SDTM/SEND variable
itself, it is just a coding style …

The source for this kind of errors is often more difficult to find out, as the error message does not
state in which script the error was made (as the script was already transformed to XSLT). Therefore,
it is good custom to always test a mapping immediately after it was developed. If the error then
occurs, it is clear that the source of it is the last mapping script that was developed.

- "No mapping provided for a 'looping' variable"
When one "instantiates" a domain for adding mappings for it, I.e. Drag-and-drop it from a template
row to the bottom, a message appears, e.g.:

Stating that one should first decide on the "structure" of the dataset, i.e. over which SDTM/SEND
variables the system will iterate when generating the dataset.
In most cases, it will be sufficient to have following "structures" for the following SDTM/SEND
"classes":

Class "Looping" variables Structure as displayed
Findings 1. USUBJID

2. xxTESTCD
One record per xxTESTCD
per USUBJID

Events 1. USUBJID
2. xxTERM

One record per xxTERM per
USUBJID

Interventions 1. USUBJID
2. xxTRT

One record per xxTRT per
USUBJID

where "xx" designates the domain code.

So, the first step after "instantiating" a domain, one should always at least check the "structure".
This can be done by a double-click on the first cell (defining the dataset/domain) of the new

generated row. E.g. for "EG":

leading to the dialog:

where, in the lower part, the "looping variables" are defined.
When one than clicks the button "Validate" one sees:

Usually, for a "Findings" domain, this will be sufficient, as when one then uses "Generalize for all
StudyEvents" (i.e. "visits) when developing the mapping for EGTESTCD, the system will
automatically know that it needs to iterate over the visits anyway.
Some users however want to be more explicit, e.g. as they develop "special" mapping scripts for
"VISIT"1, and then change the "structure" e.g. to:

In such a case, it is important that the chosen "structure" is logical and hierarchical correct. For
example it doesn't make sense to have EG.EGTESTCD as the first level, and USUBJID as the
second.

In the SDTM/SEND table on the right, one can easily recognize the looping variables, as they have
a blue-cyan border, e.g.:

Important now is that one always has a mapping for each of the "looping" variables when executing
the mappings on clinical data. Suppose for example that we added a mapping for "EG.VISIT"
(usually derived from the ODM "StudyEventOID"), but not yet for EG.EGTESTCD.
When one then executes the mappings, the following warning will be be displayed:

1 This may e.g. happen when several "StudyEvents" represent a single "visit" (in the sense of
SDTM/SEND), i.e. several "StudyEvents" are contracted into a single "visit".

Some users however choose to ignore this warning and do continue (which is possible), leading to
e.g.:

for which it is not immediately obvious what the source of the problem is.

P.S. Users have reported to us that in the case the "looping variables" have not been selected
adequately, and for one of more of them no mapping has been provided, this had led to a "Fatal
Error" during execution of the mapping.

- "A sequence of more than one item is not allowed as the first
argument of fn:string()"

This is a typical error that often occurs and that users make desperate …

What does it mean?
It means that for a variable (in this case DMDTC), a list of variables has been retrieved, whereas a
single value is expected. For DM, which has a structure of "one record per subject", one can of
course only have one DM collection date, not a list of them.

So, for this case, let us have a look at our mapping script:

We see that in the selection path, there is no condition for "StudyEventData" (selection conditions
are always in square brackets), so that the script will retrieve all values of "I_VISIT" (which
represents the visit date) from the lab form (that is however used in all or at least several visits).
Maybe in the case, the date from the lab form was used because there was nothing better …

What can one do in such a case?

* take care that only the visit in which the demographics was collected, which can be taken care of
by not using the button "Generalize for all StudyEvents". This would e.g. lead to:

* take the first date that is in the list. E.g.:

This assumes however that in the source (the ODM) the visits are in chronological order

* select the earliest date from the list. E.g.:

Using the function "earliestdate". This however assumes that all the dates as retrieved from the
ODM source is in ISO-8601 format.

- "Invalid byte 1 of 1-byte UTF-8 sequence"

Java works with Unicode / UTF-8 encoding, SAS Transport 5 (XPT format) with US-ASCII (a
subset of UTF-8 encoding). These are rather different from the (mostly default) Microsoft
"Codepoint 1255" or "Windows 1255" encoding, which is incompatible …

We have seen this error occurring when users have either:

a) a source XML file that is not completely UTF-8 encoded
This can occur when the extraction from the database was not done in UTF-8 encoding, or when the
XML was generated from Excel file without using the option "Tools - Web options - Encoding -
Unicode (UTF-8)". See e.g. https://www.youtube.com/watch?v=jdCEXU-9GHE.
We have also seen this when users copied text from a Word or Excel document (which uses
"Windows 1255" into a correctly encoded ODM-XML file or into a correctly CSV export from
Excel (or anything else) to generate the ODM-XML file. In such cases, the result is an XML file
with a mixture of encodings, which, as can be expected, causes problems.

b) an SDTM-ETL script in which text from e.g. a Word-document (typically using "Windows 1255"
encoding) was copy-pasted. For example:

Where the characters "≥" and the skew quote "’" are "Windows 1255" characters that are not only
not supported by US-ASCII (when generating XPT files), but also can cause problems during the
transformation. In such a case, one can better use e.g. ">=" and the "straight" quote.

Essentially, one should always be extremely careful when using copy-paste from MS files in
applications that either use UTF-8 encoding or US-ASCII.

Further bad practices
- Sorting keys in the define.xml for variables that require post-
processing

When using the checkbox "Resort records using define.xml keys", one should take care to not have
assigned a variable as a key for which the value is calculated or generated in a post-processing step.
This always applies to --SEQ (Sequence Number) as this is a "surrogate key", and is assigned in the
very last step of the process, after any resorting: one should not try to sort on something that is not
there yet.
The same however applies to --LOBXFL (Last Observation before First Exposure Flag), and
especially for VISITNUM when also the checkbox "Perform post-processing unscheduled
VISITNUM". Also here, sorting is first done to ensure that the data comes in the right order (as well

https://www.youtube.com/watch?v=jdCEXU-9GHE
https://www.youtube.com/watch?v=jdCEXU-9GHE

for SV as for any other "Findings" dataset), at which time there will not be a VISITNUM for the
unscheduled visits. We found that having VISITNUM as a key for sorting, and there are
unscheduled visits for which VISITNUM needs to be generated, can lead to serious side effects
such as duplicate records in as well SV as in the other "Findings" datasets for which there are
unscheduled visits.
Usually in such cases, the keys can be limited to STUDYID, USUBJID, --DTC, and in some cases,
--TESTCD and/or --CAT.

Essentially, when one wants to use the "resorting using define.xml" keys, one should try to limit the
number of keys anyway, also for the virtue of processing time. We have seen cases where people
assigned up to 10 keys for a dataset definition in SDTM-ETL, including for variables for which the
value is always empty (leading to an empty column). This of course doesn't make sense.

