
SDTM-ETL 4.x User Manual and Tutorial

Author: Jozef Aerts, XML4Pharma

Last update: 2022-06-20

Tips for mapping the LB domain

Generating LB datasets is often one of the most difficult tasks, not only due to the large or even
very large amount of data, but also because the lab data can have different providers (e.g. different
labs), but also as lab data can appear in quite different forms and formats.

Instead of providing a normal tutorial, describing the mapping for one specific situation, which is
probably not your situation, we choose to describe a number of worthful tips for generating LB
mappings and datasets.

Tip 1: Setting the looping variable

Keep it simple: in 90% of the cases, using only 2 looping variables (USUBJID and LBTESTCD)
will be sufficient. You can check this by double clicking the first cell of the „LB row“ or using the
menu „Edit – SDTM domain properties":

Do not let confuse you by the SDTM-IG which states "One record per lab test per time point per
visit per subject". That statement is about the result1, not about how you come to it. If, after a drag-
and-drop, you select the correct visits (using the "Generalize for" checkbox and the "Except for"
and "Only for" buttons), forms and item groups, then you usually will automatically obtain the
desired result. In some (but very few) cases you will want to add a third "looping variable" like
"VISITNUM", but this is usually not necessary or even counterproductive.

1It doesn't state either what variable corresponds to a "time point"

Tip 2: use several LB instances for different cases

Lab results can appear everywhere in a clinical study, and can have been generated by several labs.

This means that depending on the source (form, lab) you might need to map to a different set of LB
variables. For example, you may have the case that a set of lab tests have been executed which have
to do with pregnancy by lab A using form F1, and a set of blood lab tests by lab B collected on form
F2.

In such a case, do not unnecessarily try to "push" everything in a single LB instance, but generate
two instances of the LB domain, and generate mappings for the "pregnancy case" in one instance
and mappings for the "hematology" case in another LB instance. You can then use LBCAT and/or
LBNAM to make clear why the data has been spread over 2 or more LB datasets.
The SDTM-IGs and "Metadata Submission Guides" allow and even encourage such "splitting"
(essentially the term in incorrect in our case, as we even never had a single dataset).

In case you see you need or want to add additional variables which do not apply for all lab data, you
should definitely generate a separate LB instance for those data that you need the additional
variables. By doing so, you also make it easier for the reviewer by explicitly showing the reviewer
in which cases (or subset of data) you have the additional variable and in which cases you don't.

Tip 3: reuse information

The LB table is a typical "hypervertical" table, following the "entity-attribute-value" model of
databases. LBTESTCD is the "entity" LBORRES the "value", most of the others are "attributes".
Depending on which test is in the current row, the values for attributes like LBSTNRLO (Reference
Range Lower Limit) and LBSTNRHI (Reference Range Higher Limit) will be different.

In SDTM-ETL, you can reuse variables values (but only in read-only mode) that you have defined
before, i.e. more to the left in the same row. As LBTESTCD is pretty on the left, you can reuse its
value in all variables that come after it (i.e. more to the right). Now suppose that you reference
ranges are not the CRF, so you need to add them "manually". You can then e.g. have the following
mapping script:

if($LB.LBTESTCD == 'GLUC') {
$LB.LBSTNRLO = …;

} elsif ($LB.LBTESTCD == 'FRUCT') {
$LB.LBSTNRLO = ;

} …

As you have defined LBTESTCD before (more to the left) you do not need a drag-and-drop, you
just can reuse the value from the mapping that you did before.

In case however that the reference range is also dependent on the method (LBMETHOD) you can
not reuse the value from the LBMETHOD mapping as the latter comes after LBSTNRLO so you
will probably need a drag-and-drop and create a temporary variable which has the same XPath
expression as for the one you have for LBMETHOD itself.

For example:

$MYLBMETHOD = xpath(....);
if($LB.LBTESTCD == 'GLUC' and $MYLBMETHOD == '….') {

$LB.LBSTNRLO = …;
} elsif($LB.LBTESTCD == 'GLUC' and $MYLBMETHOD == '….') {

$LB.LBSTNRLO = …;
} elsif ($LB.LBTESTCD == 'FRUCT') {

$LB.LBSTNRLO = ;
} …

Essentially, the same applies for other defining variables such as LBSPEC.

Tip 4: Use the LOINC code when you can!

Although CDISC still doesn't want to recognize that, due to the "not invented here syndrome", the
LOINC is a much better designator of the test. This is not only true for lab tests, but also e.g. for
microbiology tests (MB domain), vital sign tests (VS) and even ECG tests (EG).
It is not a wonder at all that LOINC coding is used for all kinds of tests in Electronic Health
Records (EHRs).
Also, FDA is now requiring the submission of the LOINC code (in LBLOINC) if you can get it
from the lab provider2. Essentially, FDA should also mandate that for microbiology tests, especially
for the case of COVID-19. There is however a lot of resistance against that within CDISC.

IF you can get the LOINC codes from the lab3, why not make this fact a blessing instead of a
burden?

Essentially, as the LOINC code is a much better designator of the test than any combination of
LBTESTCD, LBTEST, LBSPEC, LBMETHOD etc., it should not be necessary anymore to also
submit values for the latter when one has populated the LOINC code in LBLOINC. Due to "not
invented here, CDISC thinks differently ...
Developing mappings for LBTESTCD, LBTEST, LBSPEC, LBMETHOD etc. is always a laborious
task, with many pitfalls. For the mapper, it requires a very good knowledge about how lab tests and
results, as essentially, the mapping is essentially a categorization step.
When one has the LOINC code however, this can be completely automated in a very reliable way.

When the FDA requirement for the LOINC code came, there was a lot of panic in the clinical
research community. As a result, CDISC developed a mapping between the 1,400 most popular lab
test LOINC codes, and the LB-SDTM variables. It was published as ... an Excel worksheet.
We soon found out that this (limited) mapping was far from sufficient for "real life" work,
especially when EHRs are used as a source. Therefore, we extended the mapping to almost 10,000
LOINC codes, with a total of over 18,000 mappings, and installed a RESTful web service to enable
applications to use them. The RESTful web service is described at:
http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html

SDTM-ETL uses this RESTful web service to automate the assignment of values for LBTESTCD,
LBTEST, LBSPEC, LBMETHOD, etc. in a very reliable way.

Here is an example where we indeed do have the LOINC code as a field in the CRF:

2 One should however not try to deduce the LOINC code from the information obtained from the lab.
3 If your lab provider cannot provide LOINC codes with the results, you should re-negociate that, or simply,
kick them out ...

http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html
http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html
http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html
http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html
http://xml4pharmaserver.com/WebServices/LOINC2CDISC_webservices.html

We see that for each test, besides the test result and the units, also the LOINC code of the test is
provided. This should nowadays be the standard.

Instead of now basing our mapping on the OIDs (identifiers) of the ODM items, we will base it on
the LOINC code. After loading a template define.xml (or use a define.xml containing prior
mappings for other domains) we first drag-and-drop one of the "LOINC" items (e.g. "RBC LOINC
code) to LBTESTCD. The usual dialog is displayed:

Important here is that we state that we want to use the value of the data point, not the identifier.
Also, we want to obtain the lab data for any visit, so we check the checkbox "Generalize for all
StudyEvents". As the lab tests come in two groups, one being "hematology" and one being "Basic
metabolic panel", we also check "Generalize for all ItemGroups", and then using "only for", select
the 2 groups:

These two groups however also contain items that do not represent a LOINC code, so we also check
"Generalize for all Items", and then select the ones for a LOINC code, using the "Only for" button:

After clicking "OK" twice, we get:

We click "Continue anyway", leading to:

selecting "Ignore the CodeList for now ..." as we want to let the RESTful web service do the work
for us. After clicking "OK", the mapping editor is shown:

We now look for the button "RESTful WS":

and if we click it, we get all the SDTM-ETL functions that use RESTful web services:

One interesting function seems to be "loinc2lbtestcd", which takes a LOINC code and returns the
value for the associated LBTESTCD value. So, let's use it!
After changing the script slightly, we have:

Then click "OK" to confirm the mapping script generation.
Before testing this mapping, let us first also populate LBLOINC itself. This can simply be done by
repeating the "drag-and-drop", but then to the LB.LBLOINC cell. The generated script is just one
line.

Let us now test on real clinical data, using "Transform - Generate Transformation (XSLT) Code for
SAS-XPT". We then need to select an ODM file with clinical data. For example:

and when hitting the "Execute Transformation on Clinical Data", we see some messages passing by:

showing us that the RESTful web service is indeed called4.

The result is:

We see that LBTESTCD has been fully automatically populated, except for the LOINC code
4 The RESTful web service is very fast, returning several hundreds of responses per second.

40366-7, for which there seems to be no mapping in the database5. This will seldom happen, as
there are mappings for almost 10,000 LOINC codes6.

We can however easily find out what the LOINC code 40366-7 means by visiting the LOINC
website:

So that we immediately see that we can map this to LBTESTCD=GLUC, LBTEST=Glucose,
LBMETHOD being empty. We will however also need to look for a CDISC code in LBSPEC for
"body fluid".

So, we slightly change the mapping script into:

5 In this case, we did this of course on purpose. If you encounter such a case that a mapping is missing,
please let us know and we will try to add it to the database used by the RESTful-WS.
6 There are over 98,000 LOINC codes (version 2.72)

After re-running the transformation, the result is:

We can now do something very similar for LBTEST, but this time not using the function
"loinc2lbtestcd", but using the function "rws:loinc2lbtest":

leading to:

and the result:

We can then do similarly for LBSPEC (using the method rws:loinc2lbspec), and LBMETHOD
(using the method rws:loinc2lbmethod).

For LBSPEC, we still need a code for "body fluid". We can try to find one using the menu "View -
SDTM associated codelist":

The best hit still seems to be "FLUID" (CDISC-NCI code C13236).
So we will use the following mapping script for LBSPEC:

Once we have the LOINC code and mappings to at least LBTESTCD and LBTEST, we can also
start populating variables such as LBORRES and LBORRESU. As we do already have
LBTESTCD. we can now choose whether to base our selection for the value either on the value of
LBTESTCD, or on basis of the value of the LOINC code. The first can however be tricky when we
have more than one type of test for the same analyte, e.g. "glucose in blood" and "glucose in urine".
In our case, we have as well "glucose in blood" (LOINC code 2339-0) as well as "glucose in body
fluid" (LOINC code 40366-7), so we must be careful, and better base the selection of which data
point to take based on the LOINC code.

The final result looks like:

Conclusion: using the LOINC code as the driver for the mapping has enormous advantages: in most
cases, all necessary mappings can be developed within an hour, whereas using the classic approach,
looking at the (local) codes and result data provided by the lab, this usually takes days, and is error
prone.

Further methods for using LOINC-CDISC mappings are explained in the tutorial "Using the
LOINC-SDTM-LB Mapping and similar functions" including storing mappings to a local file for
reuse, which in some cases can be faster than when using the RESTful web services.

