SDTM-ETL 4.x User Manual and Tutorial

Author: Jozef Aerts, XML4Pharma

E
Last update: 2022-06-19 S D T M
L

Adding mappings for the Vital Signs domain

After loading and validating the ODM file with metadata, your have already loaded an existing
define.xml with mappings, or created a new define.xml (using menu "File — Create define.xml").

In our case, where we already created the mappings for DM (Demographics) and EC (Exposure as
collected), the right part of our screen will look like:

|rs STUDYID DOMAIN USUBJID RS.RSSEQ RSRSCRPID |RSRSREFID |[RS.RSSPID

Ivs STUDYID DOMAIN USUBJID S VSSEQ VSVSGRPID [VSVSSPID SVSTESTCD

JFa STUDYID DOMAIN USUBJID FAFASEQ FAFAGRPID FAFASPID FAFATESTCD

Isr STUDYID DOMAIN USUBJID SR.SRSEQ SR.SRGRPID [SR.SRREFID [SR.SRSPID
‘|RELREC STUDYID ROOMAIN USUBJID IDVAR IDVARVAL RELTYPE RELID
lsUPPQUAL STUDYID RDOMAIN USUBJID IDVAR IDVARVAL QNAM QLABEL
|MyStudy:GLOBAL [RFSTDTC RFENDTC RFXSTDTC RFXENDTC

MyStudyDW STUDYID DOMAIN USUBJID SUBJID DMRFSTDTC [DMRFENDTC _ [DM.RFXSTDTC
mystuayEC STUDYID DOMAIN USUBJID EC.ECSEQ ECECGRPID |[EC.ECREFID |[EC.ECSPID -
I Il [D

We now create a "study-specific instance" of the VS domain just by drag-and-drop of the "VS" row
(from the template) to the bottom. The following dialog shows up:

Copy Dormain V5 X

? Copy STUDYID from loaded ODM
Copy DOMAIN from originator

Automatically add USUBJID

Automatically add --SEQ

OK Cancel

Which we all accept by clicking "OK". The result is:

SHELREC S 1ULDYID HLOMAIN LsUHJID IDVAH IDVARVAL HEL I YFE HELIL
‘ISUPPQUAL STUDYID ROOMAIN USUBJID IDVAR IDVARVAL GMAN [QLABEL
“IMyStudy:GLOBAL |[RFETDTC RFENDTC RFXSTDTC RFXEMDTC

ii"h‘l}'Stud}':DI'u‘I STUDYID COMAIN USUBJID SUBJID DM.RFSTDTC CM.RFENDTC [DM.REXSTDTC
‘MyStudy.EC STUDYID DOMAIN USUBJID EC.ECSEQ EC.ECGRPID EC.ECREFID EC.ECSPID

i MyStudyvs STUDYID COMAIN USUBJID V5. \VSSEQ SVSGRPID S.VSSFID WVS.VSTESTCD

ifled [I [»

We see that mappings have already automatically be created for STUDYID, DOMAIN, USUBIJID,
and VSSEQ — these fields in the table have then been colored grey. We also see that the field for
VSTESTCD has a blue border, meaning that it is a "looping variable", i.e. a record will be created
for each vital signs test code found in the source. If we double-click the first cell "MyStudy:VS",
the following dialog is displayed:

def:ArchiveLocationlD : |anati0n.VS

def:.Class : |Findings
KeySequence : | Set domain keys and sequence |
Description : |vital Signs

Number of levels for looping : 25

-
Level 2 VS.VSTESTCD ﬂ

I:D [Apply on Subject Level
I:D [] Apply on Subject Level

Validate

‘ oK ||-::anoe||

Also displaying the looping structure, which essentially is "One record per subject per vital signs
test code". This can be visualized by clicking the "Validate" button:

| | | 7| LIAPPIY on supject Leve! |

Validate One record per VS VSTESTCD per USUBJID

OK Cancel

We will keep this for now, and come back later and extend this when necessary.

It is always a good idea to first provide the mapping for the looping variables. So we will develop
the mapping for VSTESTCD first.

Generating the mapping for VSTESTCD

If we look into the ODM tree, we find:

o [MetaDataVersion : Version 1.1.0
9 [Protocol

7 [StudyEventDef : Pre-treatment
o= [FormDef : Visit Form
o= [FormDef : Demography
o= [FormDef : Treatment Assignment
o= [FormDef : Pharmacokinetics
o= [FormDef : Physical Exam

¢ [|studyEventDef : Treatment
o= [FormDef : Visit Form
o~ [FormDef : Vital Signs
o= [FormDef : Adverse Events
o= [FormDef : Physical Exam
o~] FormDef : Drug Exposure Form

7 [StudyEventDef : Post-treatment
o= [FormDef : Visit Form
o= [FormDef : Adverse Events
o~] FormDef: Concom Meads
o= [FormDef ; Physical Exam

o= 1 Codel ist - AF Actinn Taken Shidv Ninin

and see that vital signs are only collected in the "Treatment" visit, which is a repeating visit. Further
expanding the tree view leads to:

% [|studyEventDef : Treatment
o= [FormDef : Visit Form
o [FormDef : Vital Signs
o=] ltemGroupDef : Common
7 [temGroupDef : Vital Signs
[y temDef : vital Signs Date
[y temDef : vital Signs Time
E| [temDef : Vital Signs DateTime
o= [ltemDef : Systolic Blood Pressure
o= [ltemDef : Diastolic Blood Pressure
o=] ltemDef: Pulse
o=] ltemDef : Weight
[y temDef : Weight Units
o= [] temDef: Body Mass Index
o= [FormDef : Adverse Events

We observe that some of the fields have a cyan background color, meaning that they do already
have an "SDTM annotation", i.e. the developers of the study design already annotated these with
SDTM information, stating where the data point will later be used in SDTM. For example, if we
hold the mouse of "Systolic Blood Pressure", a tooltip is displayed:

|j| [temDef: Vital Signs DateTime MO
o= [ItemDef : Systolic Blood Pressure PC
o= [temDef : Djastalic Blood Pressure PP

o [ltemDef: P OID: IT.SYSBP - Mame: Systolic Blood Pressure
o [ItemDef - W SDTM Alias: VSORRES where VSTESTCD=SYSEP |
o

[ltemDef : Weight Units ||Ef7

We can now start developing the mapping for VSTESTCD.

First drag-and-drop from one of the appropriate entries from the ODM tree to the cell
"VS.VSTESTCD". If we e.g. take "Systolic Blood Pressure" and drag-and-drop it, the following
dialog shows up:

[£ Import ltemDef: Systolic Blood Pressure - for S0TM Variable VS VSTESTCD x
? i) Import XPath expression for ltemData Value attribute (from Clinical Data)

i® Import XPath expression for another ltemData attribute/subelement (from Clinical Data)
ItemOID v

i) Import itemDef attribute value (static value from Study Definition)

[| Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[] Generalize for all temGroups Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all ltems Except for .. No Exceptions Only for .. No Inclusions

[] viewi/Edit XPath expression (advanced)

OK Cancel

As the system knows it is about a test code, it automatically selects "Import XPath for ..."
"ItemOID". If the item contained the name of the test as a value, we would then need to select the
upper radiobutton "Import XPath expression for ItemData Value"

What will happing during execution of the mapping? When getting the clinical data, the software
will pick up the identifier of the data point (in our case it is "IT.SYSBP") and will use that for
mapping to VSTESTCD.

Now, we do have of course more vital signs collected than just the systolic blood pressure, and we
also want to get the others too. In order to get them, click the checkbox "Generalize for all Items".

i) Import XPath expression for ltemData Value attribute {from Clinical Data)

® |[mport XPath expression for another ltemData attribute/subelement (from Clinical Data)

ItemOID -
i) Import ltemDef attribute value (static value from Study Definition)

[| Generalize for all StudyEvents Except for .. No Exceptions Cnly for .. No Inclusions
[| Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all temGroups Except for .. No Exceptions Only for .. No Inclusions
[w] Generalize for all tems Except for .. No Exceptions Only for .. No Inclusions

This will select all the data points in the group "Vital Signs", including "Vital Signs Date", "Vital
Signs" time and so on. These two are not vital signs of course, so we will want to exclude them, or
alternatively, we only want to include the data point codes that really represent.

This can easily be done using one of the buttons "Except for ..." or "Only for ...". If we use "Only
for ..." the following dialog is displayed:

&l Inclusions for ltemDef e
E2)

2? [] IT.VSDATE - Vital Signs Date - |
[| IT.VSTIM - Vital Signs Time

[| ITVSDATETIM - Vital Signs DateTime
[| IT.SYSBP - Systolic Blood Pressure
[| IT.DIABP - Diastolic Blood Pressure
[| IT.PULSE - Pulse

[IT.WT - Weight

[ITWTUNITS - Weight Units

[] IT.BMI - Body Mass Index -

Clear All

OK Cancel

We than select only these items that really represent a vital signs test code, i.e.:

| £ Inclusions for lternDef et

? [| IT.WSDATE - Vital Signs Date = |
[| IT.VSTIM - Vital Signs Time

[| ITVSDATETIM - Vital Signs DateTime

IT.SYSBP - Systolic Blood Pressure

IT.DIABP - Diastolic Blood Pressure

IT.PULSE - Pulse

IT.WT - Weight

[| ITWTUNITS - Weight Units

IT.BMI - Body Mass Index

il

Clear All

OK Cancel

We do not select "Vital Signs Date", "Vital Signs Time", "Vital Signs DateTime", and "Weight
Units" as these do not represent vital signs test codes.
Clicking OK now leads to:

[£2] Import temDef: Systolic Blood Pressure - for SOTM Variable Y3, VSTESTCD =

H i Import XPath expression for ltemData Value attribute (from Clinical Data)

i@ Import XPath expression for another ltemData attribute/subelement (from Clinical Data)

[temOID -

i Import ltemDef attribute value (static value from Study Definition)

[] Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all ltemGroups Except for .. No Exceptions Only for .. No Inclusions
Generalize for all tems Except for .. No Exceptions Only for .. 5 Inclusions

[] viewlEdit XPath expression {advanced)

OK Cancel

Stating that we will have 5 different vital signs test codes.

If we had the case that vital signs would also have been collected in other visits (study-events) than
"treatment", we should select the checkbox "Generalize for all StudyEvents" and use the button
"Except for ..." or "Only for ..." and then select the visits in which vital signs have been collected.
This will then take care that these visits are also taken into account.

Clicking "OK" then leads to a new dialog:

QDM ltermn-50TM Codelist mapping >

Cr] The system found 5 ODM ltems
which can be mapped to the SDTM CodeList CL.C66741.VSTESTCD.

Do you want to use the mapping wizard to provide such a mapping?

Or do you want a template script will be generated
that you need to fill in, in order to categorize the data?

You can also choose to ignore the CodeList for now,
then no codelist mapping is performed at all.

Mapping Wizard | | Template Script lgnore CodelList

Stating that there is an SDTM codelist for VSTESTCD in SDTM, and that we can map our 5 test
codes in our ODM to the SDTM codelist. We can either choose for using a mapping wizard, which
will often be the best choice, generation of a template script that further needs to be completed, or
to ignore the SDTM codelist completely. One can already understand that in this case, this will be a
bad choice. It is only interesting when the identifier of the ODM item is identical (or closely looks
like) the SDTM test code value. This can e.g. be the case when using CDASH forms.

So we check "Mapping Wizard".

This leads to:

Codelist subsetting *

- The CodeList Vital Signs Test Code contains more than 50 items.

You may want to subset this codelist first,

using the menu Insert - Create new SOTM Codelist from existing Codelist,
and then assign this subset-Codelist to the current SDTM variable.

Mo, thanks, | will continue

Yes, | will create a subset first (imay be: slow)

Reason that this appears that the number of codes in the codelist is pretty large (larger than the
threshold xx - which can be changed using the menu "Options - Properties" anyway), so that it may
take some time to set up the wizard when there is a large number of test codes, as is e.g. the case for
LBTESTCD. As for VSTESTCD, the number of codes (somewhat more than 60) is still acceptable,
we will not create a subset first. So, we click "No, thanks".

When there is a very large number of testcodes, like for LBTESTCD (almost 2,500 test codes, still
growing), it may take a few minutes when not generating a subset. However, generating a subset
first also takes time...

After about 5 seconds, the mapping wizard is displayed:

Codelist mapping between a set of ODM Items and 50TM Codelist "Vital Signs Test Code” >
? ODM Item SDTM CodeList Item
IT.SYSBP ABSKNF - Search
IT.DIABP ABSKNF - Search
IT.PULSE ABSKNF - Search
ITWT ABSKNF - Search
IT.BMI ABSKNF b Search
MISSING VALUE |ABSKNF - Search

O Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS VSTESTCD

O]
[] Adapt variable Length for longest CodeList item
[] Except for items already mapped
Atltempt 1:1 mapping [] Also use CDISC Synonym List Reset from 1:1 mapping attempt

[] Also use Company Synonym List

[] Use SDTM decoded value

[| Ask to store mappings as synonyms to Company Synonym List

OK Cancel

For each of the entries on the left (our ODM codes) we can now easily map to an SDTM "vitals

IT.BMI

BMI

signs test code", by a simple selection on the right. For example, for "Systolic Blood Pressure":
Codelist mapping between a set of ODM lterns and 50TM Codelist "Vital Signs Test Code” x
? QDM Item SDTM CodelList ltem
IT.SYSBP ABSKNF - Search
IT.DIABP | Systolic Blood Pressure | * Search
IT.PULSE ABSKNF - Search
ITWT ABSKNF - Search
IT.BMI ABSKNF - Search
MISSING VALUE |ABSKNF - Search
O Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS.VSTESTCD
In many cases, just typing the first characters of the desired test code, allows to find the desired test

code. This will e.g. lead to:

Codelist mapping between a set of ODM ltems and S0TM CodeList "Vital Signs Test Code” ot

? ODM Item SDTM CodelList Item

IT.SYSBP SYSBP - Search
IT.DIABP MABP - Search
IT.PULSE PULSE - Search
ITWT WEIGHT - Search
IT.BMI BMmI - Search
MISSING VALUE |ABSKNF - Search
Generate subset codelist from 55,
L and assign to the SDTM variable % M.llNG VUE
For the last row "MISSING VALUE", we should also make a choice. Usually, one will select the

"NULL" value, i.e. scroll to the bottom of the list and select the last entry which is the empty entry:
MISSING VALUE

-] L
ABSKNF - [
t codelist f | te{IUL“ARL
H ellst Trom seledc

1e SDTM variable V5.V 51 B0

WASTHEEL
WEIGHT
WSTCIR

[»

_ength for longest Codel

WTAPCTL
—

[] Except for

WTHTPCTL

e

‘.ILlllll
=

With the result:

IT.BMI BMI - Search

MISSING VALUE - Search

The case of a "missing value" should however never occur in practice, as VSTESTCD is a "looping
variable" and we iterate only over data points that represent one of these 5 test codes.

Clicking "OK" then generates the mapping script:

| £ Designing mapping for SDTM Variable: VS.VSTESTCD X

E‘ r Mapping Description and Link to external Document
SOTM-ETL mapping for VS WSTESTCD

% External Document Link

—|Mapping Description: mandatory in define.xml 2.0
r The Transformation Script
Generalized for all Items within the ItemGroup
Mapping for ODM Items [IT.5Y5BF, IT.DIRBE, IT.FUL3SE, IT.WI, IT.BMI] to 5SDTM Codelist V3.VSIESTCD
SCODEDVALUE = xpath{/StudyEventData[@StudyEvent0ID="5E.VISITL'] fFormData [@Form0ID="FORM.VS"] /ItemGroupData [@I tem
if ($CODEDVALUE == 'IT.S5YSEBE') |

SNEWCODELDVRLUE = 'SYSEE';

[»]

} elsif ($CODEDVALUE == 'IT.DIRBE") |
$NEWCODEDVRALUE = 'DIABP';
} elsif ($CODEDVALUE == 'IT.PULSE") |
$NEWCODEDVALUE = 'PULSE';
} elsif ($CODEDVALUE == 'IT.WI') |
$NEWCODEDVRALUE = '"WEIGHT'; L
} elsif ($CODEDVALUE == 'IT.BMI') | T
$NEWCODEDVRLUE = 'BMI';
} elsif ($CODEDVALUE == "'} |
$NEWCODEDVRLUE = '';
} else |

SNEWCODELDVALUE = 'NULL':
}
$VS.VSTESTCD = $NEWCODEDVALUE;

[«]

[4] I [»]

If needed, one can then still adapt the mapping script manually. In many cases, this will not be
necessary.

One then accepts the mapping script (which is then stored in the underlying define.xml) by clicking
the "OK" button.

Sometimes it is faster to let the mapping wizard find out the corresponding test codes, using the
button "Attempt 1:1 mapping". In our relative simple case (as the ODM item "Name" already
closely corresponds to the SDTM code), this works perfectly', leading to:

! The algorithm behind this is based on word similarity between Item OID/Name and the test code from the codelist

ODM Item SDTM CodeList Item

IT.SYSBP SYSBP - Search
IT.IABP DIABP - Search
IT.PULSE PULSE - Search
IT.WT WEIGHT - Search
IT.BMI BMI - Search
MISSING VALUE - Search

A third method, introduced in SDTM-ETL 4.1 is to use one of the "Search" buttons. For example
for "ITWEIGHT", clicking it shows up a "Search" window:

ODM Item SDTM CodeList Item

IT.SYSBP |SYSBP - Search
IT.NHABP ABP - Search
Search in Codelist =
? Search |weight Next

ABSKNF - Abdominal Skinfold Thickness
ARMSPAN - Arm Span
BMI - Body Mass Index
BMIAPCTL - BMI-for-Age Percentile —

[]w

= General BMR - Basal Metabolic Rate
and ass BODLNGTH - Body Length
n BODYFATM - Body Fat Measurement
BRTHWT - Birth Weight
[] Adapt ¥ BSA - Body Surface Area

CALFCIR - Calf Circumference

Jl

Attemp OK Cancel

rgppln

and when typing in "weight", followed by "Search" will also provide "WEIGHT" as the test code.
This feature is especially interesting when the OIDs and even the "Name" of the item are not vey
meaningful, as we have seen in a number of cases of ODM exports of EDC systems", but the
mapper does now (from other sources?) what the meaning of each ODM item is.

Furthermore, one can tell the system to automatically generate a subset SDTM/SEND codelist when

doing the mappings, and automatically assign it to the VSTESTCD SDTM variable. This is done by
checking the checkbox "Generate subset codelist ...".

IT.BMI BMI - Search

MISSING VALUE - Search

= Generate subset codelist from selected SDTM items,
‘/, and assign to the SDTM variable VS.VSTESTCD

New in SDTM-ETL v.4.1 is, that when one has checked the "Generate subset codelist ...", another
checkbox becomes available:

IT.BMI BMI - Search

MIS SING VALUE - Search

Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS VSTESTCD

Also create a subset codelist for the corresponding VS VSTEST (test name) variable,
/,’D and generate the corresponding mapping script for the corresponding VS VSTEST variable

[] Adapt variable Length for longest CodeList item

when checked, the corresponding subset codelist for VSTEST (Vital Signs Test Name) will
automatically be created. This is possible due to the 1:1 correspondence between values for
-TESTCD and -TEST variables. Additionally, the mapping script for also VSTEST will be
generated fully automatically behind the scene. So, one is then essentially hitting two targets with
one shot! This new feature should however be used with care, and the additionally generated
mapping script for VSTEST also be inspected.

A message is displayed:

Message >

@ Created subset codelist
CL.CET153.VSTEST.SUBSET
with Name: Vital Signs Test Name subset
and assigned it to variable: VS VSTEST

OK

The additionally mapping script for VSTEST then looks like:

r The Transformation Script

1 # Mapping using OOM element ItemData with Item0ID IT.5YSBF - walue from attribute ItemOID
2 # Generalized for all Items within the ItemGroup
3 4 Mapping for ODM Items [IT.S5Y¥SBP, IT.DIABP, IT.PULSE, IT.WT, IT.BMI] toc SDTM Codelist WS.VSTESTICD
4 4# with Codelist OID "CL.CE6741.VSTESICD'
& $CODEDVALUE = xpath(/StudyEventData[@StudyEvent0ID="SE.VISITA"] /FormData [@FormOID="FORM.V53"']/ItemGroupData [BIte
& # Mapping cocde for wariable V3.WSTEST
7 # automatically generated from the mapping script for the corresponding variakle null
& # using decoded values of the V3.V5STIESICD codelist
9 if ($CODEDVALUE == 'IT.SYSED') |

10 SNEWCODEDVALUE = 'Systolic Blood Pressure';

11 } =lsif ($CODEDVALUE == 'IT.DIABP') [

1z $NEWCODEDVRALUE = 'Diastolic Blood Pressure';

13 |} elsif ($CODEDWVALUE == 'IT.PULSE"') [

14 SNEWCODEDVRALUE = 'Pulss Rate';

15 |} elsif ($CODEDVALUE == 'IT.WI') |

16 SNEWCODEDVRALUE = 'Weight';

17 |} elsif ($CODEDWVALUE == 'IT.BMI') {

15 SNEWCODEDVALUE = 'Body Mass Indesx';

19 | elsif ($CODEDVALUE == '") |

20 SNEWCCODEDVRALUE = 'NULL';:

zl } else |

22 SNEWCCODEDVRALUE = 'NULL';

23 }

24 $V3.VSTEST = SNEWCODEDVALUE;

25

One can now do a first test, by using the menu "Transform — Generate Transformation (XSLT) Code
for SAS-XPT"2. This leads to:

ot

")

Select whether the ODM file with clinical data works with non-typed or with typed temData

@ It uses non-typed ltemData e [t uses TYPED ltemData
(as in ODM 1.2) (new as of ODM 1.3)

[] Mever ask again in current session

OK

Most of the EDC vendors (>90%) use the "classic" ODM export, with "non-typed ItemData". Only
a few use the "Typed ItemData" flavor of ODM. If you have doubts, ask your EDC vendor which of
both is exported, or just try both here — if you have the wrong one, the output will simply be empty.

The following dialog is displayed after clicking "OK":

2 If one does not want to use SAS-XPT as the output format, but use the new Dataset-XML format, one of course uses
the menu "Transform — Generate Transformation (XSLT) Code for Dataset-XML"

i
>

1 =%xml version="1.0" encoding="UTF-8"7=
2 =xslstylesheet xminsxsl="httpfwww w3.org/M999XS0LMransform™
3 xmins:sdm="http:/fwww.cdisc.orgins/studydesigniv.0”
4 xymins:math="http:ifwww. w3.0rgi2005xpath-functions/math”
5 xmins:xdt="http:/fmnw w3.0rgi2005/02kpath-datatypes”
A xmins:odm="hitp:ifwww_cdisc.org/ns/odmii 3"
7 ¥xmins:xs="httpfwww w3 org/2001/XMLSchema”
8 xmins:sdtm-etl="http:ww xmldpharma.com/SDTM-ETLIns"
4 xmins:def="http:’www cdisc.ora/ns/defiv.2.0"
10version="2.0"=
11
12
13 =xsloutput method="xml" encoding="UTF-8" indent="yes" /=
14 =xslvariable name="SINGLE_QUOTE ='=islvariable==xslvariable name="DOUBLE_QUOTE ="=fslvariable==xslvariable nam
14 =l- Template for the top ODM element —=
16
17 =xsltemplate match="odm:ODM™=
18 =l- create a top ODM element —
19 =xsl.element name="0DM" xmins="hitp.ifwww.cdisc.orgins/odmi. 2 ==xsl.copy-of select="document{™)*inamespace;.def==1— Add a Descri
20
21 =xslatiribute name="00MVersion™=1.2=/sl.attribute=
22 =xslattribute name="Description™=3DTM data generated by the SDTM-ETL tool=/xsl:attribute=
23 =xslaftribute name="FileType“=Snapshot=/xslattribute:=
24 =xslaftribute name="FileOID"=MyStudy=/xs|:attribute:=
26 =l— Add an instruction that automatically creates a datetime stamp when the stylesheet is executed —=
26 =xsl:attribute name="CreationDateTime™==xslvalue-of select="current-dateTime()"F=</xsl:attribute=
27 =l- Add a ReferenceData element —
28 =xslelement name="ReferenceData™
28 =l-- Add the StudyOID attribute —=
30 =xsl:attribute name="Study0ID " =MyStudy=/fsl attribute=
3 =l— Add the MetaDataVersionQID attribute —=
32 =xslatiribute name="MetaDataVersionOID"=CDISC SDTM.3 2=zl attribute=
33 =l—- XSLT generated from the SDTM-ETL scripting language - domain instance = MyStudy. GLOBAL —==l- XSLT generated from the SDTM-ETL|
34 =l—|terate over variable USUBJID —=
345 =yslfor-each select="fodm:SubjectData™=
1] i | [*]

MK

[4]

| Save Transformation (XSLT) Code H Execute Transformation (XSLT) Code

Close

Showing you the generated XSLT. If you want to use it for offline SDTM generation, you can save
it now. You can also skip this step by using the menu "Options — Settings" and checking "Skip
display of generated XSLT".

Then click the button "Execute Transformation (XSLT) Code", leading to:

| Execute Transformation (X5LT) Code for SAS-XPT x
E2

ODM file with clinical data:
‘C:"l

[MetaData in separate QDM file

Browse...

Browse...
[] Administrative data in separate ODM file
Browse...

[] Save output XML to file

Browse...
[Perform post-processing for assigning —LOBXFL
[] Split records > 200 characters to SUPP-- records

[| Move non-standard SDTM Variables to SUPP-- Move Comment Variables to Comments (CO} Domain
Move Relrec Variables to Related Records (RELREC) domain | | Try to generate 1:N RELREC Relationships
View Result SDTM tables [] Adapt Variable Length for longest resuit value

[] Generate "NOT DONE' records for Q5 datasets

[] Save Result SDTM tables as SAS XPORT files
SAS XPORT files directory:

Browse...

[] Add location of SAS XPORT files to define.xml [] store link as relative path

] Additionally generate a merged dataset for "split' domain datasets
Messages and error messages:

Execute Transformation on Clinical Data

Close

Now select an input file with ODM clinical data (as exported from your EDC system) by using the
first "Browse" button. For example:

| & Execute Transformation (XSLT) Code for SA5-XPT *
ODM file with clinical data:

‘C:I ” Browse...
[Metal 5 Open x
[] Admiq LookIn: ‘EODM” |" E
ml D My Study_ODM_1_3 typed_ltemData.xml
[] save [} MyStudy_ODM_1_3_typed_itemData_single_subject.xml
ment.xml D My StudyNew_ODM_1_3.xmil
[] Perfo [} MyStudyNew_ODM_1_3_ClinicalData_120_subjects.xmi |
[] splitr D My StudyNew_ODM_1_3_ClinicalData_1200_subjects.xml
] Move D My StudyNew_ODM_1_3_ClinicalData_6000_Subjects.xml Comments {CO) Domain
Move| [1| | Il | [*| Relationships
v View ! File Name: [MyStudyNew_ODM_1_3_ClinicalData_120_subjects.xm | lgestresuitvalue
L1Gene roq of Type: |All Files |~ |
[] save
SAS XPO Open | | Cancel |
leading to:
| £ Bxecute Transformation (XSLT) Code for SAS-XPT *

ODM file with clinical data:
‘D:\SDTI'u1—ETL1.TestFiIes*.ODM1—31.I'u1\,r8tud\,rNew_0DM_'1 _3 ClinicalData_120_subjects.xml

[] MetaData in separate ODM file

[| Administrative data in separate ODM file

[] Save output XML to file

[] Perform post-processing for assigning --LOBXFL
[] Split records > 200 characters to SUPP-- records

In most cases, you will not need to check the checkbox "Metadata in separate ODM file". This will
only be the case e.g. when you need "decoded" codelist values from the ODM, or the "description"
or "question text" of a data point.

If you already want to generate SAS-XPT datasets, also check the checkbox "Save Result SDTM
tables as SAS XPORT file", and then select a directory where these need to be written to. During
testing however, this will usually not be necessary, as the generated SDTM tables will be displayed
by the software itself.

All the other options will be explained later.

Clicking "Execute Transformation on Clinical Data" starts the transformation. In case of very
complicated mappings and large amounts of data this can take a few minutes.

In our case, the results display after a few seconds:

| £ SDTM Tables

(i) [MyStudyDM | MyStudyEC | MyStudyVs |

STUDYID DOMAIN USUBJID V3. VW3SEQ V3 VSTESTCD
MyStudy VS 1001 1 SYSBP
MyStudy VS 1001 2 DIABP
MyStudy VS 1001 3 PULSE
MyStudy = 1001 4 WEIGHT
MyStudy VS 1001 5 BMI
MyStudy VS 1001 6 SYSBP
MyStudy VS 1001 7 DIABP
MyStudy VS 1001 8 PULSE
MyStudy VS 1001 9 SYSBP
MyStudy VS 1001 10 DIABP
MyStudy VS 1001 11 SYSBP
MyStudy VS 1001 12 DIABP
MyStudy = 1001 13 PULSE
MyStudy VS 1001 14 WEIGHT
MyStudy VS 1001 15 BMI
MyStudy VS 1001 16 3YSBP
MyStudy VS 1001 17 DIABP
MyStudy VS 2001 1 SYSBP
MyStudy VS 2001 2 DIABP
MyStudy VS 2001 3 PULSE
MyStudy VS 2001 4 WEIGHT
MyStudy = 2001 5 BMI
MvStudy VS 2001 6 SYSBP

Showing that 17 vital signs data points have been collected for the first subject (1001). Remark that
"VSSEQ" has been generated automatically, this does not need to be programmed by the user.

| £ SDTM Tables X
® My Study:VS
STUDYID DOMAIN USUBJID VS.WSSEQ WS.VSTESTCD WS.VSTEST
MyStudy VS 1001 1 SYSBP Systolic Blood Pressure -~
MyStudy VE 1001 2 DIABP Diastolic Blood Pressure
MyStudy VS 1001 3 PULSE Pulse Rate
MyStudy VS 1001 4 WEIGHT Weight 1
MyStudy VS 1001 5 BMI Body Mass Index T
MyStudy VS 1001 3] SYSBP Systolic Blood Pressure
MyStudy VS 1001 7 DIABP Diastolic Blood Pressure
MyStudy VS 1001 g PULSE Pulse Rate
MyStudy VS 1001 9 SYSBP Systolic Blood Pressure
MyStudy VS 1001 10 DIABP Diastolic Blood Pressure
MyStudy VS 1001 11 SYSBP Systolic Blood Pressure
MyStudy VS 1001 12 DIABP Diastolic Blood Pressure
MyStudy VS 1001 13 PULSE Pulse Rate
MyStudy VS 1001 14 WEIGHT Weight
MyStudy VS 1001 15 BMI Body Mass Index
MyStudy VS 1001 16 SYSBP Systolic Blood Pressure
MyStudy VS 1001 17 DIABP Diastolic Blood Pressure
MyStudy VS 2001 1 SYSBP Systolic Blood Pressure
MyStudy VS 2001 2 DIABP Diastolic Blood Pressure
MyStudy VS 2001 3 PULSE Pulse Rate
MyStudy Vs 2001 4 WEIGHT Weight

Continuing with VSORRES

Once the mapping for VSTESTCD has been developed (which can be a bit more challenging when
the tests are divided over different forms), generating the mapping for VSORRES is pretty easy.

Select the cell "VS.VSORRES" and then drag-and-drop one of the tree nodes representing a vital
signs test to the cell "VS.VSORRES". Again, a dialog is displayed.

[£ Import temDef: Systolic Blood Pressure - for SOTM Variable V5 VSORRES =

2 i@ Import XPath expression for ltemData Value attribute {from Clinical Data)

i Import XPath expression for another ltemData attribute/subelement {from Clinical Data)

) Import ltemDef attribute value {static value from Study Definition)

[| Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all temGroups Except for .. No Exceptions Only for .. No Inclusions
[w] Generalize for all tems Except for .. No Exceptions Only for .. 5 Inclusions

ODM ltemDef Lenghth: 3 SDTM Variable Length: 80
[] Set SODTM Variable Length to ODM ltemDef Length

[] view/Edit XPath expression {advanced)

OK Cancel

This time we must import the value of the data point, not the code. So, we let the checkbox "Import
... for ItemData Value attribute ..." selected. We also see that the system remembers the
"generalization" with the 5 inclusions, so there is nothing to be changed there.

Also notice the line "ODM ItemDef Length" (near the bottom) stating that in the ODM the value
has been declared as of a maximum length of 3, whereas in SDTM the value from the template is
80. So, not a bad idea to check the checkbox "Set SDTM Variable Length to ODM ItemDef Length"
which will set the value for the maximum length in SDTM to 3 too:

¥ | eIl diLe 100 all Ienns | EXCEPL U . | MO EXCELUILS L L1 L 2 TSI SIS

ODM ItemDef Lenghth: 3 SDTM Variable Length: 80
Set SDTM Variable Length to ODM ItemDef Length

Clicking "OK" leads to:

r Mapping Description and Link to external Document

SDTM-ETL mapping for VS5 WSORRES

4

External Document Link

r The Transformation Script

Mapping using CLCM element ItemData with ItemOID IT.SYSEP
Generalized for all Items within the ItembGroup
$VS.VSORRES = xpath(/StudyEventData [@5tudyEvent0ID="5SE.VISITA"] /FormData[EForm0ID="FIRM.V5']/ItemGroupData[@ltemGro

After accepting the mapping script, testing on our clinical data leads to:

| £ SDTM Tables

(i) (sysuarvs |

STUDYID DOMAIN USUBJID V3.VSSEQ VS.VSTESTCD VS VSTEST VS.VSORRES
MyStudy VS 1001 1 SYSBP Systolic Blood Press... (100 -
MyStudy WS 1001 2 DIABP Diastolic Blood Pres... |70
MyStudy VS 1001 3 PULSE Pulse Rate 52
MyStudy VS 1001 4 WEIGHT Weight 33 1
MyStudy VS 1001 5 BMI Body Mass Index 23 T
MyStudy WS 1001 3] SYSBP Systolic Blood Press... 108
MyStudy VS 1001 7 DIABP Diastolic Blood Pres... |74
MyStudy VS 1001 3 PULSE Pulse Rate 65
MyStudy VS 1001 9 SYSBP Systolic Blood Press... [107
MyStudy WS 1001 10 DIABP Diastolic Blood Pres... |75
MyStudy VS 1001 11 SYSBP Systolic Blood Press... (105
MyStudy W3 1001 12 DIABP Diastolic Blood Pres... |76
MyStudy Vs 1001 13 PULSE Pulse Rate 63
MyStudy VS 1001 14 WEIGHT Weight 882
MyStudy VS 1001 15 BMI Body Mass Index 23
MyStudy W3 1001 16 SYSBP Systolic Blood Press... (108
MyStudy VS 1001 17 DIABP Diastolic Blood Pres... |74
MyStudy W3 2001 1 SYSBP Systolic Blood Press... (100
MyStudy VS 2001 2 DIABP Diastolic Blood Pres... |70
MyStudy VS 2001 3 PULSE Pulse Rate 52
MyStudy Vs 2001 4 WEIGHT Weight 88
MyStudy V3 2001 5 BMI Body Mass Index 22

We also see that something is not entirely ok. In the ODM, it was defined that the maximum length
(as text) is 3, but we see that there are values that are of length 4. Although this can be
automatically corrected when generating the SAS-XPT files, it is not a bad idea to set the maximum
length for VSORRES to 4 already now in the underlying define.xml.

In order to do so, select the cell VS.VSORRES and then use the menu "Edit — SDTM Variable

Properties". This leads to:

Edit Properties for SDTM Variable VS.VSORRES

2]

ol
Name:

Data type:

Current Length:

[] New Length:

Current Significant Digits:
[] New Significant Digits:

Checking the box "New Length" allows us to set the new maximum length to 4:

Edit Properties for SOTM Variable V5

&

SORRES

ol
Name:

Data type:

Current Length:

New Length:

Current Significant Digits:
[] New Significant Digits:

VS.VSORRES

VSORRES

text

3

VS.VSORRES

VSORRES

| text

3

la

Clicking "OK" updates the variable properties.
When we then hold the mouse over the cell "VS.VSTESTCD" we see:

VS VWSORRES

Mandatory: Mo

JM.DTHFL | OrderNumber: 12

=C.ECCAT |Role: Result Qualifier

VSVSORRES | temDeflSDTM Name: VSORRES

Data type: text

sYSBP" Length: 4

Description: Result or Finding in Criginal Units

And see that the maximum length has indeed been updated.

Generating the mapping for VSTEST

If we do not want to use the new feature of generating the mapping for VSTEST simultaneously
with the mapping for VSTESTCD, generating the mapping for VSTEST is almost identical to the
one for VSTESTCD.

Drag-and-drop one of the vital sign test entries from the ODM tree to the VS.VSTEST cell, then
select to use the "ItemOID" from the clinical data:

| £ Import [temDef: Systolic Blood Pressure - for SOTM Variable VS.WSTEST

? i Import XPath expression for ltemData Value attribute {from Clinical Data)
® Import XPath expression for another ltemData attribute/subelement (from Clinical Data)
[temOID -
i) Import ltemDef attribute value (static value from Study Definition)
[| Generalize for all StudyEvents Except for .. Mo Exceptions Only for .. No Inclusions
[| Generalize for all Forms Except for .. Mo Exceptions Only for .. No Inclusions
[| Generalize for all temGroups Except for .. Mo Exceptions Only for .. No Inclusions
Generalize for all ltems Except for .. No Exceptions Only for .. 5 Inclusions

[] view/Edit XPath expression (advanced)

OK Cancel

The system still knows about our 5 different vital sign test, so we can just continue, leading to:

QDM Item-50TM Codelist mapping

5 The system found 5 ODM Items
which can be mapped to the SDTM CodeList CL.LC6F153.VSTEST.SUBSET.

Do you want to use the mapping wizard to provide such a mapping?

Or do you want a template script will be generated
that you need to fill in, in order to categorize the data?

You can also use the decode function on the value of VS.VSTESTCD

You can also choose to ignore the Codelist for now,

then no codelist mapping is performed at all.

Pt

Mapping Wizard

Template Script Decode function

lgnore CodeList

We can once again use the "mapping wizard", leading to:

Codelist mapping between a set of ODM ltems and S50TM CodeList "Vital Signs Test Name

? ODM Item

IT.SYSBP

IT.IABP

IT.PULSE

ITWT

IT.BMI

MIS SING VALUE

SDTM CodeList Item

Abdominal Skinfold Thickness - Search
Abdominal Skinfold Thickness - Search
Abdominal Skinfold Thickness - Search
Abdominal Skinfold Thickness - Search
Abdominal SKkinfold Thickness - Search
Abdominal Skinfold Thickness - Search

n Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS.VSTEST

[] Adapt variable Length for longest CodeList item

Which can then easily be completed, using one of the methods described before, to:

Codelist mapping between a set of ODM ltems and 50TM Codelist "Vital Signs Test Mame” >
? QDM Item SDTM CodeList Item
IT.SYSBP Systolic Blood Pressure - Search
IT.DIABP Diastolic Blood Pressure - Search
IT.PULSE Pulse Rate - Search
ITWT Weight - Search
IT.BMI Body Mass Index - Search
MISSING VALUE - Search
O Generate subset codelist from selected SOTM items,
and assign to the SDTM variable VS.VSTEST
[] Adapt variable Length for longest CodeList item
[] Except for items already mapped
Attempt 1:1 mapping [] Also use CDISC Synonym List Reset from 1:1 mapping attempt
[] Also use Company Synonym List
L]
[] Ask to store mappings as synonyms to Company Synonym List
DK Cancel
Which then automatically generates the mapping script:
|é| Designing mapping for SOTM Variable: V5.VSTEST

|z| r Mapping Description and Link to external Document

SDTM-ETL mapping for VS.VSTEST

= | External Document Link

r The Transformation Script

SHEWCODEDVALUE = "NULL';

}
$V5.VSTEST = SNEWCODEDVALUE:

Generalized for all Items within the ItemGroup
4 Mapping for ODM Items [IT.SYSBP, IT.DIRBF, IT.PULSE, IT.WT,
SCODEDVALUE = xpath (/StudyEventData[@5tudyEvent0ID="5E.VISITA"] /FormData [@FormOID="FORM.VS'] /ItemGroupData [@I tem]

if ($CODEDVALUE == 'IT.SYSBE') [
SNEWCODEDVALUE = 'Systolic Blood Pressurs';

} elsif ($CODECVALUE == 'IT.DIRBE') |
SNEWCODEDVALUE = 'Diastolic Blood Pressurs';

} elsif ($CODEDVALUE == 'IT.FULSE') {
SNEWCODEDVALUE = '"Pulss Rate';

} elsif ($CODEDVALUE == 'IT.WI') {
SHEWCODEDVALUE = 'Weight':

} elsif ($CODEDVRALUE == 'IT.BMI') |
SNEWCODEDVALUE = '"Body Mass Indsx':

} elsif ($CODEDVALUE == ''} |
SNEWCODEDVALUE = '';

} else |

IT.BMI] to SDIM Codelist V5.VSTEST

And after testing using Transform — Generate Transformation ...", leads to:

[»]

|£| SOTM Tables X

@ (MyStudy:DM | MyStudy:EC || MyStudy:Vs |

STUDYID DOMAIN USUBJID V3.VSSEQ VS.VSTESTCD VS.VSTEST VS.VSORRES
MyStudy VS 1001 1 SYSBP Systolic Blood Pressure 100 -
MyStudy VS 1001 2 DIABP Diastolic Blood Pressure |70
MyStudy VS 1001 3 PULSE Pulse Rate 62
MyStudy VS 1001 4 WEIGHT Weight 85 1
MyStudy VS 1001 5 BMI Body Mass Index 23 T
MyStudy VS 1001 i} SYSBP Systolic Blood Pressure 108
MyStudy VS 1001 7 DIABP Diastolic Blood Pressure |74
MyStudy VS 1001 8 PULSE Pulse Rate 65
MyStudy V& 1001 g SYSBP Systolic Blood Pressure 107
MyStudy VS 1001 10 DIABP Diastolic Blood Pressure |75
MyStudy V& 1001 11 SYSBP Systolic Blood Pressure 105
MyStudy VS 1001 12 DIABP Diastolic Blood Pressure |76
MyStudy VS 1001 13 PULSE Pulse Rate 63
MyStudy VS 1001 14 WEIGHT Weight 85.2
MyStudy VS 1001 15 BMI Body Mass Index 23
MyStudy VS 1001 16 SYSBP Systolic Blood Pressure 108
MyStudy VS 1001 17 DIABP Diastolic Blood Pressure |74
MyStudy VS 2001 1 SYSBP Systolic Blood Pressure 100
MyStudy VS 2001 2 DIABP Diastolic Blood Pressure |70
MyStudy VS 2001 3 PULSE Pulse Rate 62

Nice! We are making good progress ...

Generating other mappings for Vital Signs - VSORRESU

If we now look at our table again, we see

¢ LMLLITHU LWL T HEL LA EIL LALLMV L LWL IV IAR LWLER AU W UNLALE LA
EC.ECMOOD EC.ECCAT EC.ECSCAT EC.ECPRESP |[EC.ECOCCUR |EC.ECDOSE EC.ECDOSTXT |[EC.ECD!
S5.WSPOS VS VSORRES SVSORRESU [WSVSSTRESC SVSSTRESN [VS.WSSTRESU WS.WSSTAT S.VSRE

That we still need to add the information for "VSORRESU" (original result units) and for
VSSTRESC, VSTRESN (standardized results, character and numeric) and VSSTRESU
(standardized result units). We will start with VSORRESU (original units).

We see at the ODM side that for systolic and diastolic blood pressure, the units are not provided.
The reason is that the value is always mmHg (UCUM notation®: mm[Hg]). For "Weight" however,
the field in the EDC system was essentially a free text field, as we can see from the ODM:

T L PRI M e y ==
o=] ltemDef : Weight RPF

[temDef - Weight Units ; SCE
o [itemDef: Body Mass Index : 55.5

= FormDef - Adverse Events QID: ITWTLNITS - Mame: Weight Uinits

And when we ask for the associated codelist using the menu "View — Item CodeList Details" we get
... nothing. We can also see that there was no codelist, by selecting "Weight Units" and inspecting
the line at the bottom:

Ly i ey |=|: [V3.VBFUS [Vo. ¥ BURRES [v3.
4] I | |>|<15§ 4] | I
|DataType="text" - Length="2" - Mandatory="No" - Name="Weight Units" - OID="IT.WTUNITS" - SASFieldName="WTUNITS"

So, what were the reported weight units? In order to see them, use the menu "View — ODM
ClinicalData". This leads to:

3 Unfortunately, CDISC and FDA do not allow units in UCUM notation yet, which would simplify many things, such as
automated unit conversions.

View Clinical Data X

@ File with ODM Clinical Data: |CA\SDTM-ETL\TestFiles\ODM1-3\MyStudyMew_0ODM_1_3_ClinicalData_120_subjects xml | | Browse...

[_] Generalize for all ltems
[] Generalize for all temGroups
[_] Generalize for all Forms

[] Generalize for all StudyEvents

[] Limit Results to first Results
[] Also display RepeatKeys

' ODM uses non-typed ltemData _' ODM uses TYPED ltemData

| View ODM Clinical Data

And clicking "View ODM Clinical Data" then shows us a table:

View Clinical Data X

@ File with ODM Clinical Data: |C\SDTM-ETL\TestFiles\ODM1-3\WMyStudyMew_ODM_1_3_ClinicalData_120_subjects.xml | | Browse...

[_] Generalize for all ltems
[] Generalize for all ltemGroups
[_] Generalize for all Forms

[] Generalize for all StudyEvents

[] Limit Results to first Results
[] Also display RepeatKeys

@ ODM uses non-typed ltemData ' ODM uses TYPED ltemData

View ODM Clinical Data

Subject StudyEvent Form ltemGroup ltem Value
1001 SEVISITA FORM.VS IGVS ITWTUNITS kg -
1001 SEVISITA FORM.VS IGVS ITWTUNITS kg
2001 SEVISITA FORM.VS IGVS ITWTUNITS kg
2001 SEVISITA FORM.VS IGVS ITWTUNITS kg
3001 SEVISITA FORM.VS IGVS ITWTUNITS kg
3001 SEVISITA FORM.VS IGVS ITWTUNITS kg
4001 SEVISITA FORM.VS IGVS ITWTUNITS kg
4001 SEVISITA FORM.VS IGVS ITWTUNITS kg 3
5001 SEVISITA FORM.VE IGVS ITWTUNITS kg I
5001 SEVISITA FORM.VS IGVS ITWTUNITS kg
6001 SEVISITA FORM.VE IGVS ITWTUNITS kg
6001 SEVISITA FORM.VS IGVS ITWTUNITS kg
7001 SEVISITA FORM.VS IGVS ITWTUNITS kg
7001 SEVISITA FORM.VS IGVS ITWTUNITS kg
3001 SEVISITA FORM.VS IGVS ITWTUNITS kg
3001 SEVISITA FORM.VS IGVS ITWTUNITS kg
9001 SEVISITA FORM.VS IGVS ITWTUNITS kg |
u<n|n1 SE VISITA ENRM VS T IT WTLINITS ke b >

Max.Length expected: 2 - Max.Length encountered: 2

And we see that "kg" has always been used. If we had found a multitude of different units here, we
would have had to add some extra code, e.g. taking into account the different ways of writing
"kilogram" and "pounds".

Inspecting the collected data is always a good idea when the item was a free text item and needs to
be standardized.

In order to provide the mapping for VSORRESU, again drag-and-drop one of the vital signs entries
from the ODM to the VS.VSORRESU cell, and select to import the "[temOID", leading to:

| £ Import ltemDef: Systolic Blood Pressure - for SOTM Variable VS.VSORRESU

?) Import XPath expression for ltemData Value attribute (from Clinical Data)
i@ Import XPath expression for another ltemData attribute/subelement (from Clinical Data)
[temOID -
i Import ltemDef attribute value (static value from Study Definition)
[] Generalize for all StudyEvents Except for .. No Exceptions Only for .. Ho Inclusions
[| Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[| Generalize for all temGroups Except for .. No Exceptions Only for .. No Inclusions
Generalize for all ltems Except for .. No Exceptions Only for .. 5 Inclusions
[] viewlEdit XPath expression (advanced)
OK Cancel
Continued by the dialog:

ODM ltermn-50TM Codelist mapping

Do you want to use the mapping wizard to provide such a mapping?

- The system found 5 ODM ltems
which can be mapped to the SDTM CodeList CL.CG6770.VSRESU.

Or do you want a template script will be generated

that you need to fill in, in order to categorize the data?

You can also choose to ignore the CodelList for now,

then no codelist mapping is performed at all.

Mapping Wizard

Template Script

lgnore CodelList

And when clicking "Mapping Wizard", the mapping wizard is displayed:

Codelist mapping between a set of ODM lterns and 50TM Codelist "Units for Vital Signs Results” s

? ODM Item SDTM CodeList Item
IT.SYSBP % - Search
IT.DIABP % - Search
IT.PULSE] - Search
ITWT % - Search
IT.BMI % - Search
MISSING VALUE |% - Search

O Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS.VSORRESU

Which we can easily complete, as typing the first character already leads us to the unit value that
we need. The result will be:

Codelist mapping between a set of ODM Items and 50TM Codelist "Units for Vital Signs Results" >
? ODM Item SDTM CodeList Item
IT.SYSBP mmHg - Search
IT.IABP mmHg o Search
IT.PULSE beats/min - Search
ITWT kg b Search
IT.BMI kgim2 - Search
MIS SING VALUE o Search

O Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VSV SORRESU

Leading to the mapping script:

[

| Designing mapping for SOTM Variable: V5.VSORRESU

r Mapping Description and Link to external Document

SDTM-ETL mapping for VS VSORRESU

% External Document Link

}

}

r The Transformation Script
Generalized for all Items within the ItemGroup
Mapping for OOM Items [IT.S5YSBP, IT.DIABP, IT.PULSE,

SCODEDVALUE = xpath({/StudyEventData[fStudyEvent0ID="5SE.VISITA'] /FormData [@FormdID="FORM.V5"] /ItemGroupData [EItem

if ($CODEDVALUE == 'IT.SYSEP') |
SNEWCODEDVALUE = '"mmHg';
elsif ($CODEDVALUE == 'IT.DIRBE") |
SNEWCODEDVALUE = "mmHg';
elsif ($CODEDVALUE == 'IT.FULSE') |
SNEWCODELDVRLUE = 'beats/min':
elsif ($CODEDVALUE == 'IT.WI') {
SNEWCODEDVALUE = 'kg';
elsif ($CODEDVALUE == 'IT.BMI') |
SNEWCODEDVALUE = "kg/m2';
elsif ($CODEDVALUE == '') |
SNEWCODEDVALUE = '';
elss |

SNEWCODELDVALUE = 'NULL':

$V5.VS0RRESU = $NEWCODEDVALUE;

IT.WI, IT.BMI] to SDTM Codelist V3.V3QRRESU

[»]

[4]

[4]

[»]

Suppose now that we want to read the value for "weight unit" from the ODM, and add the value
here. We can easily do so by adding some extra scripting. We first drag-and-drop "Weight Units" to
"VSORRESU". As there is already a mapping present, the system asks us:

=~

it

A mapping already exists for SDTM Variable VS.VSORRESU

) Overwrite existing mapping

i Append to existing mapping at top

@ Append to existing mapping at bottom

[] with other variable name than V5.VSORRESU

New variable name:

OK

Cancel

In our case, it is a good idea to append the mapping to the top of our script, so we select "Append to
existing mapping at top". We can also give a new name to the new variable that is then created, e.g.:

Pt

? A mapping already exists for SDTM Variable V5.VSORRESU

) Overwrite existing mapping

@ Append to existing mapping at top

{_) Append to existing mapping at bottom

With other variable name than V5. VSORRESU
New variable name:

WEIGHTUNIT]

OK Cancel

After clicking "OK", we get:

@J Impart lternDef: Weight Units - for S0TM Variable WEIGHTUMNIT

? ® Import XPath expression for ltemData Value attribute (from Clinical Data)

i) Import XPath expression for another ltemData attribute/subelement (from Clinical Data)
i) Import ltemDef attribute value (static value from Study Definition)

[] Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions
[] Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[] Generalize for all ltemGroups Except for .. No Exceptions Only for .. No Inclusions
Generalize for all tems Except for .. No Exceptions _M

ODM ItemDef Lenghth: 2 SDTM Variable Length: 11
[] Set SODTM Variable Length to ODM ltemDef Length

[] View/Edit XPath expression (advanced)

oK Cancel

However, this time, we only want to import the value for "Weight Units", so do not want to
"generalize for all items" (within the group), so we must unselect that checkbox:

J NN A NN R T L B Rl oy wwm B R e R

< Dkieneralize for all Item5|> Except for .. No Exceptions

= _Uﬂﬁrtem Def Lenghth; 2 SDTM Variable Length: 11
[| Set SODTM Variable Length to ODM lemDef Length

No Inclusions

[] view/Edit XPath expression {advanced)

OK Cancel

And after clicking "OK" we get:

S50TM has an associated Codelist, but QDM haszn't o

L] A Codelist is associated with the SDTM Variable VS.VSORRESU
but no Codelist is associated with the ODM ItemDef Weight Units.

Use a mapping wizard starting from the distinct values
_ of the item Weight Units,
in an ODM file with Clinical Data

Generate a template mapping script for categorization of the data.
This template script must then be completed.

i lgnore the CodeList for now. No CodeList mapping attempt will be performed.

OK Cancel

Allowing us to choose between starting a mapping wizard that takes the distinct values of "Weight
Units" from the clinical data, generating a template mapping script that needs to be completed, and
just ignoring the codelist for now. The first can be very useful, but also tricky when the clinical data
is not complete yet.

Which will first try to generate a template script that we will need to complete. Clicking "OK" leads
to:

r The Transformation Script

Mapping using OCM element ItemData with ItemOID IT.WIUNITS

$ Using categorizaticn as a Codelist is asscciated with the SDTM Codelist

$ but no Codelist is asscciated with the ODM data

$WEIGHTUNIT|= xpath {/3tudyEventData [@5tudyEvent0ID="5SE.VISITL"] /FormData [@FormdID="FORM.V3"] /Iten

if{) |
£VS.VSORREST = '3';
} elsif{ } |

5VS.VS0REESU = "keats/min';
} elsif{) |
SVS.VS0REESU = "breaths/min";

} elaif{) |
SWS.VS0BRESU = "C';
} elsif{) |
£VS.VSORRESU = 'cm';
] elaif{) |
SWS.VS0BRESU = "F';
} elsif{) |
£V5.VSORRESU = 'g';
} elsif{) |
SVS.VS0RERESU = "in';
[4] Il |

Such a "template" script is extremely useful when one needs to "categorize" collected data that
comes as free text into categories or coded values, as is the case here.

In our case however, it is only about "weight", so we can remove that template script again, as we
will just "pick up" the value as it was collected, i.e. "ignoring the codelist". This leads to:

r The Transformation Script

[»]

Mapping using COLOM eslement ItemData with ItemQID IT.WIUNITS

Using categcrization as a Cocdelist is asscciated with the SDTM Codelist
but no Codelist is asscciated with the OCM data

SWEIGHTUNIT = xpath(/StudyvEventData[EfStudyEvent0ID="5E.VISITA"'] /FormData [@FormOID="FOEM.V5"'] /ItemGroupData[BItem]

Mapping using ODM element ItemData with ItemOID IT.SYSBP - walue from attribute ItemOID

Generalized for all Items within the ItemGroup

Mapping for OLM Items [IT.SYSEBP, IT.DIABP, IT.FULSE, IT.WI, IT.EMI] to S5DTM Codelist WV5.VSCRRESU

$CODEDVALUE = xpath{/StudyEventData [@StudyEventOID="SE.VISITA']/FormData [@FormOID="FORM.V5'] /ItemsroupData [BItem|_—

if ($CODEDVALUE == "IT.5YSBP') |
$NEWCODEDVALUE = "mmHg';

} elsif ($CODEDVALUE == 'IT.DIZBE') {
$NEWCODEDVALUE = "mmHg';
} elsif ($CODEDVALUE = 'IT.FULSE') {
SHEWCODEDVALUE = '"beats/min';
} elsif ($CODEDVALUE = 'IT.WI') |
$NEWCODEDVALUE = 'kg'; ||
} elsif ($CODEDVALUE — 'IT.BMI'") |
$NEWCODEDVALUE = 'kg/m2';
} elsif ($CODEDVALUE = '') |
SNEWCODEDVALUE = ''; |
| 4] I | [y

The first set of lines takes the collected value for weight unit, the other lines "hard-code" the value,
as it was not collected, but e.g. prescribed by the protocol.

There is now still one line we need to correct, which is the line in the "if" statements that is about
weight units. We change it into:

r The Transformation Script

[»]

Mapping using OLM element ItemData with Item0ID IT.WIUNITS

Using categeorization as a Codelist is asscciated with the SDIM Codelist
but no Codelist is asscciated with the CODM data

SWEIGHTUNIT = x=path({/StudvEventData[@5tudvEwent0ID="5SE.VISITA"']/FormData[@Form0ID="FORM.V5"']/ItemGroupData[@ltem]

Mapping using OLM element ItemData with ItemQID IT.S5YSEP - walue from attribute ItemQID

Generalized for all Items within the ItemGroup

Mapping for ODM Items [IT.SYSBP, IT.DIABP, IT.PULSE, IT.WI, IT.BMI] to SDIM Codelist VS5.VSORRESU

SCODEDVALUE = xpath(/StudvEventData[E@StudyEventQID="SE.VISITA']/FormData[@Form0ID="FORM.V5"']/ItemGroupData[@ltem]_

if ($CODEDVALUE == "IT.SYSBP') |
SNEWCODEDVALUE = "mmHg';

] elsif (3CODEDVALUE == 'IT.DIZBE') |

$NEWCODEDVALUE = 'mmig" :
} elsif ($CODEDVALUE == 'IT.PULSE') |

SNEWCODEDVALUE = 'beats/min':
] elsif ($CODEDVALUE == 'IT.WI') |

$NEWCODEDVALUE = $WEIGHTUNIT; L
] elsif ($CODEDVALUE — 'IT.BMI') {

$NEWCODEDVALUE = 'kg/m2';
} elsif ($CODEDVALUE = '') |

¢NEWCODEDVALUE = ''; ~]
K I | 0]

Saying that for "Weight", we will take the collected value, and not the hard-coded value.

Running the scripts then leads to:

|£:f SOTM Tables

®

[MyStudy:DM | MyStudy:EC [MyStudy:VS |

AlN USUBJID VS VSSEQ VS VSTESTCD VS VSTEST VS VS0ORRES VS VS0ORRESU
1001 1 SYSBP Systolic Blood Pres... | 100 mmHg -
1001 2 DIABP Diastolic Blood Pre... |70 mmHg
1001 3 PULSE Pulse Rate 62 beats/min
1001 4 WEIGHT ‘Weight 38 kg 1
1001 5 BMI Body Mass Index 23 kg/m2 T
1001 5} SYSBP Systolic Blood Pres... (108 mmHg
1001 7 DIABP Diastolic Blood Pre... |74 mmHg
1001 8 PULSE Pulse Rate 65 beats/min
1001 9 5YSBP Systolic Blood Pres... 107 mmHg
1001 10 DIABP Diastolic Blood Pre... |75 mmHg
1001 11 SYSBP Systolic Blood Pres... 105 mmHg
1001 12 DIABP Diastolic Blood Pre... |76 mmHg
1001 13 PULSE Pulse Rate 63 beats/min
1001 14 WEIGHT ‘Weight 38.2 kg
1001 15 BMI Body Mass Index 23 kg/m2
1001 16 SYSBP Systolic Blood Pres._.. (108 mmHg
1001 17 DIABP Diastolic Blood Pre... |74 mmHg
2001 1 SYSBP Systolic Blood Pres._.. (100 mmHg
2001 2 DIABP Diastolic Blood Pre... |70 mmHg
2001 3 PULSE Pulse Rate 62 beats/min
2001 4 WEIGHT ‘Weight 88 kg
2001 5 BMI Body Mass Index 22 kg/im2

Later, we will also learn how to create "Value lists" for VSORRES for the individual tests. See the
tutorial "Working with the WhereClause in define.xml 2.0". With SDTM-ETL, generating value
lists is extremely easy, whereas it is a nightmare with some of our competitor software offerings.

Remark that "ignoring the codelist" is only a good idea when one is sure that the value for the unit
already follows the CDISC notation, which is often true in the "paper world", but surely not when
the data is collected electronically or from electronic health records, where the much better UCUM
notation is used. Unfortunately, CDISC still does not allow UCUM notation* ("not invented here
syndrome")

Creating the mapping for VSPOS

VSPOS (Vital Signs Position) is a "permissible" variable, meaning that one can omit it when no
data was collected for it, which is the case here. We will however still add it to demonstrate the use
of "Origin" in define.xml.

Suppose that it was stated in the protocol that the vital sign tests blood pressure and pulse must be
taken in sitting position. For "weight", "height" (which is not collected here) this of course doesn’t
make sense. So we will create a small mapping script in which we state that in the former case, the
value of VSPOS is "SITTING", whereas it is empty ("null") in the latter case.

Let us first have a look at the allowed values for VSPOS.
In order to do this, select the cell VS.VSPOS and use the menu "View - SDTM Associated
CodeList". The following dialog is displayed:

* There is however some overlap between UCUM notation and CDISC notation, especially for concentrations.

http://www.xml4pharma.com/SDTM-ETL/SDTM-ETL_3_1_working_with_WhereClause.pdf"
http://www.xml4pharma.com/SDTM-ETL/SDTM-ETL_3_1_working_with_WhereClause.pdf"
http://www.xml4pharma.com/SDTM-ETL/SDTM-ETL_3_1_working_with_WhereClause.pdf"
http://www.xml4pharma.com/SDTM-ETL/SDTM-ETL_3_1_working_with_WhereClause.pdf"
https://ucum.org/
https://ucum.org/

Codelist: CL.CT1148.POSITION >

®

DECUBITUS [CTT532] -
FOWLERS [C62173]

LATERAL DECUBITUS [C100758]
LEFT LATERAL DECUBITUS [CE2172]
PRONE [C62165]

REVERSE TRENDELENBURG [CG62169] [
RIGHT LATERAL DECUBITUS [C62171]
SEMI-FOWLERS [C62174]
SEMI-RECUMBENT [C111310]

SITTING [CE2122] -

OK

In SDTM-ETL, one can always reuse variables in the same row that come before the current
variable and for which a mapping exists. As VSPOS comes after VSTESTCD, we can easily reuse
it in a set of one or more "if" statements.

So we can write:

r The Transformation Script

FV3.W3P03 = "';
if ($V3.V3TESTCD="DIABF' or $V3.V3TESICD='"3Y5BF' or $V3.V3TESICD='FUL3E") {
FV3.V5P05 = 'SITTING';

} else |
SVS.VSPOS = '';
}
leading to:
| 5| SDTM Tables *

®

[MyStudy:DM | MyStudy:EC [MyStudy:Vs |

BJID VSVSSEQ VS VSTESTCD VS VSTEST Y5.VSPOS Y5 VSORRES VS VSORRESU
1 SYSBP Systolic Blood Pres... |SITTING 100 mmHg -
2 DIABP Diastalic Blood Pre... |SITTING 70 mmHg
3 PULSE Fulse Rate SITTING 62 beats/min
4 WEIGHT Weight 88 kg 1
5 BMI Body Mass Index 23 kg/m2 T
G SYSBP Systolic Blood Pres... |SITTING 108 mmHg
7 DIABP Diastalic Blood Pre... |SITTING 74 mmHg
g PULSE Fulse Rate SITTING 65 beats/min
g SYSBP Systolic Blood Pres... [SITTING 107 mmHg
10 DIABP Diastolic Blood Pre... |SITTING 75 mmHg
11 SYSBP Systolic Blood Pres... |SITTING 105 mmHg
12 DIABP Diastalic Blood Pre... |SITTING 76 mmHg
13 PULSE Fulse Rate SITTING 63 beats/min
14 WEIGHT Weight g8.2 kg
15 BMI Body Mass Index 23 kg/m2
16 SYSBP Systolic Blood Pres... |SITTING 108 mmHg

If the "position" was collected, one can of course generate the mapping using simple drag-and-drop,
and using the codelist mapping wizard when necessary.

As the subject’s position for vital signs measurement was defined in the protocol, we should add
this information in the (underlying) define.xml. We can do this at the variable level (VSPOS) or at
the value level, i.e. individually for SYSBP, DIABP, WEIGHT, ... The mechanism is however

essentially the same.
Just for the sake of the tutorial, we will define the "origin" at the variable level here.

Select the VS.VSPOS cell, and then use the menu "Edit — SDTM Variable Properties". The
following dialog is displayed:

Edit Properties for SOTM Variable VS.V5POS

E oID: VS.VSPOS
Name: VSPOS

Data type: text

Current Length: 380

[] New Length:

Current Significant Digits:

[] New Significant Digits:

Current Role: Record Qualifier
[] New Role

Current Role CodeList:

[] New Role CodeList |

Current Origin: NONE DEFINED YET

[_] Edit Origin: ‘ Edit

Comment:

| External document for comment |

One sees that no "origin" has been defined yet.
So, check the checkbox "Edit Origin", and then click the button "Edit" on the right of it. The
following dialog is displayed”:

Designing/Updating Origin for ltern: VP05 >

L | Origin type:
i Assigned

i Protocol
i Derived

i_! Electronic Data Transfer

1 CRF

If we select "CRF", more fields become available:

5 In the case of Define-XML 2.1, the dialog will be different.

Designing/Updating Origin for [tem: YSPOS X

L] Origin type:
i Assigned

i1 Protocol
{_ Derived
{1 Electronic Data Transfer

W CRF
Document (leaf) 1D;
LF.aCRF -

' No page details

i) Page list (physical reference)

_’ Named destinations
Page list / List of named destinations

i) Page range: first page - last page

First page:
Last page:

OK Cancel

If the subject’s position would have been collected, we would set the "origin" to "CRF", and then
add the page numbers in the annotated CRF. If the subject’s position would have been assigned by
us (not recommended), we would set the origin to "Assigned". In our case however, as it comes
from the protocol, we select the radiobutton "Protocol":

Designing/Updating Crigin for ltern: VSPO5 >

] Origin type:
) Assigned

i® |Protocol
() Derived
1 Electronic Data Transfer

) CRF
Document (leaf) ID;

) No page details
i) Page list (physical reference)

i) Named destinations
Page list / List of named destinations

One also sees that the fields about page numbers are then disabled. Click "OK" to confirm. This
leads to the prior dialog:

Edit Properties for SOTM Variable VS.V5P05

E olD:

Name:

Data type:

Current Length:

[] New Length:

Current Significant Digits:
[[] New Significant Digits:
Current Role:

[_] New Role

Current Role CodeList:
[_] New Role CodelList
Current Origin:

Edit Origin:

Comment:

‘ External document for comment ‘
Current CodeList

VS.VSPOS
VSPOS

text

380

Record Qualifier

Protocol

‘ Edit

CL.C71148.POSITION

We also see that somehow, the maximum length was set to 380, which just doesn't make sense. We
set it to 7 which is the length of the word "SITTING".

We can also add a comment to the "origin" statement, and even make a reference to an external
document if our comment is too long for keeping it in the define.xml. Just let us add a short

statement that one can find the instruction about taking the vital signs in a sitting position on page

37 of the protocol. For example:

Edit Properties for SOTM Variable V5.V5POS

@ oID:

Name:

Data type:

Current Length:

New Length:

Current Significant Digits:
[] New Significant Digits:
Current Role:

[_] New Role

Current Role CodeList:

[] New Role CodeList

*
VS.VSPOS
VSPOS
|text | hd |
380
i |

Record Qualifier

Current Origin: Protocol
Edit Origin: —— Edit
T <See protocal page D

‘ External document for comment ‘

Current CodeList

Now click "OK" to confirm.

When we move the mouse over the cell "VS.VSPOS" a tooltip is displayed:

CL.C71148.POSITION

SR.SRCAT [ysvspos

Mandatory: Mo

OrderMumber: 11

_ |Role: Record Qualifier

DW.DTHOTG temDefiISDTM Name: VSPOS

EC ECMOOO pata type: text

VSVSPOS | Length: 7

Description: Vital Signs Position of Subject
CodeList CL.C71148.POSITION

Qrigin: Protocol

Mappings for VSSTRESN, VSSTRESC and VSSTRESU
In our case, all collected values are already in standard units, so there is not much to do.

Also, as VSSTRESN, VSSTRESC and VSSTRESU come after VSORRES and VSORRESU, we
can reuse the values. For example for VSSTRESN, we can simply state:

|£: Designing mapping for SOTM Variable: VSWVS5TRESN

Lo] r Mapping Description and Link to external Document

SOTM-ETL mapping for VS V3STRESN

r The Transformation Script
$V5.VS5TRESN = $W5.VSORRES:

And similar for VSSTRESC and VSSTRESU (which can be copied from VSORRESU)).

Just for the sake of the tutorial, suppose that we also had collected "frame size"
(VSTESTCD=FRMSIZE) which has values "SMALL", "MEDIUM" and "LARGE" and thus no
units, and as it is not a numeric value, VSSTRESN ("Numeric Result/Finding in Standard Units"),
we could easily write the script as:

r The Transformation Script

When the test code is FEMSIZE, there is no numeric wvalue

if (sV5.VIIESICD != "FREMSIZIE") [
$V5.V35TRESN = $V3.V30ERES;

} else |
£VS.VSSTBRESN :

With a similar script for VSSTRESU

In SDTM-ETL, we usually do not have to care whether the value is numeric or text as long as we
do not perform calculations®. This is taken care of by the software itself.

Just as an example, let us suppose that some of the weight data was collected in (US) pounds. We

® The use of having two variables -STRESC and -STRESN is an artefact of the mandated use of SAS Transport 5 by the
regulatory authorities. It is something that is not of the 21st century anymore.

know that 1 pound (UCUM notation: [Ib_av]) = 0.4536 kg. If CDISC would allow UCUM notation,
this conversion factor and the conversion itself could be done by a RESTful web service as e.g.
delivered by the National Library of Medicine. However, this is not the case yet, and we need to
program this manually. For VSSTRESN the script could then looks like:

r The Transformation Script

For WEIGHT in pounds, a conversicn is necessary

For FEMSIZE, there is no numeric value

if (§VS.VSTESTICD = '"FEMSIZE') |
SVS.V35TRESN = '';

} elsif (&VS5.VSTESTCD = "WEIGHT' and $VS.VSOREESU = 'pounds') |
$V5.V55TRESH 0.4536 * number($V5.VS0RRES) ;

} else |
$V5.VS5TRESH

FV5.V30RRES;

Remark the use of the "number()" function to ensure that the value is treated as numeric.
Also remark that in "if"- statements, the comparator "==" as well as "=" can be used. Both are
treated equal.

The result when executing the transformations then is:

|£| SDTM Tables *

®

[MyStudy:DM | MyStudy:EC | MyStudy:Vs |

TEST V3 V5POS V5 VS0ORRES VEVS0ORRESU WS WSSTRESC V3 VSSTRESN VEVS5TRESU
od Pres.. |SITTING 100 mmHg 100 100 mmHg -~
ood Pre... [SITTING 70 mmHg 70 70 mmHg
SITTING 62 beats/min 62 62 beats/min
38 kg a8 88 kg 1
Index 23 ka/im2 23 23 kag/mz2 T
od Pres... |SITTING 108 mmHg 108 108 mmHg
ood Pre... |[SITTING 74 mmHg 74 74 mmHg
SITTING 65 beats/min 65 65 beats/min
od Pres... [SITTING 107 mmHg 107 107 mmHg
ood Pre... [SITTING 75 mmHg 75 75 mmHg
od Pres.. [SITTING 105 mmHg 1056 105 mmHg
ood Pre... |[SITTING 76 mmHg 76 76 mmHg
SITTING 63 beats/min 63 63 beats/min
88.2 kg 882 88.2 kg
Index 23 kg/m2 23 23 kg/m2
od Pres... [SITTING 108 mmHg 108 108 mmHg
ood Pre.. |SITTING 74 mmHg 74 74 mmHg
od Pres.. |SITTING 100 mmHg 100 100 mmHg
ood Pre... [SITTING 70 mmHg 70 70 mmHg
SITTING 62 beats/min 62 62 beats/min
38 kg a8 88 kg
Index 22 kgim2 22 22 kg/m2
od Pres... |SITTING 108 mmHg 108 108 mmHg

Generating the mappings for VSDTC and VSDY

For VSDTC (Vital Signs Date/Time of collection), we can simply drag-and-drop from the ODM
item "Vital Signs DateTime" or by concatenating the values of "Vital Signs Date" and "Vital Signs
Time". Also here, first displaying the collected clinical data is often of help.

For the case, we need to concatenate date and time, we first drag-and-drop from "Vital Signs Date"
to VS.VSDTC, and manually change the variable name in e.g. "VISDATE":

https://ucum.nlm.nih.gov/ucum-service.html

The Transformation Script

Mapping using CODM element ItemData with ItemOID IT.VSDATE
SVISDRTE = xpath(/StudyEventData[@5tudyEvent0ID="5E.VISITL "] /FormData [@Form0ID="F{

Then we drag-and-drop from "Vital Signs Time" to VS.VSDTC. As there is already a mapping
present, the systems asks us what to do. We state that we want to append it to the existing mapping
with another variable name, e.g. "VISTIME":

pod

2 A mapping already exists for SDTM Variable VS.VSDTC

i) Overwrite existing mapping

i Append to existing mapping at top

@ Append to existing mapping at bottom
With other variable name than VS VSDTC
New variable name:

VISTIME]

OK Cancel

Leading to:

r The Transformation Script

Mapping using OCDM element ItemData with ItemOID IT.VSDATE
SVISDATE = xpath{/StudvEventData[@5tudvEwvent0ID="5E.VISITL"] /FormData [@Form)ID="FORM.VS"
Mapping using OCDM element ItemData with Item0ID IT.VSTIM
SVISTIME = xpath(/StudyEventData[@StudyEvent0ID="5E.VISITA"]/FormData [EForm0ID="FORM.VS"

In case we are not sure that the time part has always been collected, we can take care of that in the
script. For example:

r The Transformation Script

Mapping using ODM element ItemData with Item0ID IT.WVSDATE

SVISDATE = xpath(/StudyEventData[@5tudyEvent0ID="5E.VISITA "] /FormData [@Form0ID="FORM.V3'] /It
Mapping using ODM element ItemData with ItemDID IT.VSTIM

SVISTIME = xpath{/StudyEventData[@5tudyEvent0ID="SE.VISITL"] /FormData [BForm0ID="FORM.V3'] /It
Take intoc account that it might ke that the wisit time has not always been collected

if({$VISTIME !'= "'} |

SV5.VSDIC = createdatetime (SVISDATE, SVISTIME) ;

alternatively, we can use: V5.VSDIC = concat ($VISTDRTE, 'T',sVISTIME);
} else |

FW3.V5DIC = $VISDATE:

We can either use the "createdatetime" function (which is a build-in function) or perform the
concatenation ourselves using the "concat" function.

Our result is:

|£| SDTM Tables X

@ (MyStudy:DM | MyStudy:EC_|{ MyStudy:Vs |

VB.VSPOS VB VBTESTCD V8 VBORRES VS VSORRESU VS VSSTRESC VB VBSTRESN VS.VSSTRESU VSMBDTC

ITTING 5YSBP 100 mmHg 100 100 mmHg 2006-05-01T12:48:00 =

ITTING DIABP 70 mmHg 7o 70 mmHg 2006-05-01T12:48:00

ITTING PULSE G2 beats/min 62 G2 beats/min 2006-05-01T12:48:00
WEIGHT a8 kg es a8 kg 2006-05-01T12:48:00 i
BMI 23 kg/m2 23 23 kag/m2 2006-05-01T12:48:00 T

ITTING SYSBP 108 mmHg 108 108 mmHg 2006-05-01T12:54.08

ITTING DIABP 74 mmHg 74 74 mmHg 2006-05-01T12:54:08

ITTING PULSE G5 beats/min 65 G5 beats/min 2006-05-01T12:54:08

ITTING SYSBP 107 mmHg 107 107 mmHg 2006-05-01T13:07:22

ITTING DIABP 75 mmHg 75 75 mmHg 2006-05-01T13:07:22

ITTING SYSBP 105 mmHg 105 105 mmHg 2006-05-03T12:01:00

ITTING DIABP 76 mmHg 76 76 mmHg 2006-05-03T12:01:00

ITTING PULSE 63 beats/min 63 63 beats/min 2006-05-03T12:01:00
WEIGHT 88.2 kg 88.2 88.2 kg 2006-05-03T12:01:00
BI 23 kg/m2 23 23 kg/m2 2006-05-03T12:01:00

ITTING SYSBP 108 mmHg 108 108 mmHg 2006-05-03T12:07:22

ITTING DIABP 74 mmHg 74 74 mmHg 2006-05-03T12:07:22

ITTING SYSBP 100 mmHg 100 100 mmHg 2006-05-01T12:48:00

ITTING DIABP 70 mmHg 7o 70 mmHg 2006-05-01T12:48:00

ITTING PULSE 62 beats/min 62 62 beats/min 2006-05-01T12:48.00
WEIGHT a8 kg [ok:] as kg 2006-05-01T12:48.00
Bl 22 kg/m2 22 22 kagim2 2006-05-01T12:48.00

ITTING 5YSBF 108 mmHg 108 108 mmHg 2006-05-01T12:54.08

ITTING DIABP 74 mmHg T4 74 mmHg 2006-05-01T12:54.08

ITTING PULSE G5 beats/min 65 65 beats/min 2006-05-01T12:54.08

ITTING 5YSBF 107 mmHg 107 107 mmHg 2006-05-01T13:.07.22

ITTING DIABP 75 mmHg 75 75 mmHg 2006-05-01T13:07.22

TR avanp ng rmbin AnE 4nE mmkn ANNANE_NATA2-N4-0N

(remark that we moved the VSTESTCD column somewhat to the right for a better visualization of
the results).

Once we have VSDTC, the derivation of VSDY is very simple. Here is the script:

r The Transformation Script

difference in days beween date/time of collecticn and reference
DRYS = datediff ($V5.V5DTC, $RF5TDTC) ;
for non-negative differences, add 1
a3 V5DY is not allowed to ke O
1f ($DRAYS >= 0) |
EW3.V5DY = $DAYS + 1;
} elae |

$V3.V5DY = $DAYS;

We use the function "datediff" to obtain the number of days between the date/time of collection and
the reference start date RESTDTC, which was previously defined as a global variable (see the
tutorial "Generating mappings for the SV domain & creating global variables for reuse"), and then
add 1 when the number of days is non-negative. The reason is that the FDA considers the reference
start date as day 1, and there is no day 0 according to the FDA.

Generating mappings for VISITNUM and VISIT

VISITNUM (Visit Number) is an expected variable (integer datatype) in SDTM, VISIT a
permissible variable.

There is no requirement that visit numbers are subsequent. They just have to be unique for each
planned visit, and need to be described in the "trial visits" (TV) domain. There is also no
requirement that they are positive numbers. So, we might e.g. assign negative numbers to all visits

http://www.xml4pharma.com/SDTM-ETL/Generating_SV.pdf
http://www.xml4pharma.com/SDTM-ETL/Generating_SV.pdf

before the reference start date and positive numbers for the visits at or after the reference date.
Unscheduled visits should be given a floating point number. For example, if there are two
unscheduled visits between visit 2 and 3, these can be given visit number 2.1 and 2.2.

In our case, we have a single "pre-treatment" visit (ODM: Repeating=No) and several "treatment
visits" (ODM: Repeating=Yes"). We will give the "pre-treatment" visit the visit number 1, and the
repeating visits a number starting from 2. We could however also have started from e.g. 11 for the
repeating visits, that is completely OK.

The nice thing about ODM is that in the clinical data the repeat number is already given by the
attribute "RepeatKey". We can easily see this when using the menu "View — ClinicalData", and
select the checkbox "Also display RepeatKeys". For example, for our data point "systolic blood
pressure":

View Clinical Data X

@ File with ODM Clinical Data: |(C\SDTM-ETL\TestFiles\ODM1-3WyStudyMew_ODM_1_3xml | | Browse...

[] Generalize for all ltems
[] Generalize for all temGroups
["] Generalize for all Forms

[] Generalize for all StudyEvents

[] Limit Results to first Results
Also display RepeatKeys

% ODM uses non-typed ltemData _' ODM uses TYPED ltemData

View ODM Clinical Data

Subject StudyEvent Repeatkey Form Repeatkey ltemGroup Repeatkey Item Value
0o SEVISITA 1 FORMVS 1 IG.VS 1 IT.5YSBP 101
001 SEVISITA 1 FORMVS 2 IGVS 1 IT.SYSBP 103
0o SEVISITA 2 FORMVS 1 IG.VS 1 IT.5YSBP 100
001 SEVISITA 2 FORM.VS 1 IG.VS 2 IT.SYSBP 108
0o SEVISITA 2 FORMVS 1 IG.VS 3 IT.5YSBP 107
001 SEVISITA 2 FORM.VS 1 IG.VS 3 IT.SYSBP 108
0o SEVISITA 3 FORMVS 1 IG.VS 1 IT.5YSBP 105
001 SEVISITA 3 FORMVS 1 IG.VS 2 IT.SYSBP 108

We see that for subject 001, the "treatment" visit (SE.VISITA) has been repeated 3 times
(RepeatKey values from 1 to 3). So we can easily use the value of "RepeatKey" for calculating the
visit number.

In order to do so, drag-and-drop the "StudyEventDef Treatment" to the SDTM cell
"VS.VISITNUM":

o [MetaDataVersion : Version 1.1.0
7 [Protocol
o= [StudyEventDef : Pre-treatment
¢ [CJ|StudyEventDef : Treatment
o= [FormDef : Visit Form

T e Ly T R

A dialog shows up:

Import StudyEventDef: SEVISITA - for SDTM Variable VSVISITMNUM X

? @ Import XPath expression for

) Import attribute value (static value) for
olD -

[] Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions

[] View/Edit XPath expression {advanced)

OK Cancel

We do however not retrieve the OID (the identifier) but we want the "RepeatKey", so we use the
selection box as follows:

Import StudyEventDef: SEVISITA - for SOTM Variable VSWISITMUM =

> @ Import XPath expression for

) Import attribute value (static value) for
oD -

oD

Repeatkey
TransactionType

OK Cancel

After clicking "OK", the mapping script is generated:

The Transformation Script

Mapping using ODM element StudyEventData u3ing value from attribute StudyEventRepeatEey
SVI.VISITNUM = xpath(/StudyEventData[@5tudyEvent0ID="3E.VISITL "] /EStudyvEventRepeatkey) :

And adapt it to:

The Transformation Script

Mapping using ODM element StudyEventData using wvalue from attribute StudyEventRepeatEey
SREFEATEEY = xpath(/5tudyEventData[@5tudyEvent0ID="5E.VISITA"] /@5tudyEventRepeatkey) ;
FV3.VISITNUM = $BEFEATEEY + 1:

For the SDTM variable "VISIT", we can reuse the value from "VISITNUM". For example, we can
set it as:

The Transformation Script
SV5.VISIT = concat ("TEREATMENT WISIT ', sVS.VISITNUM) ;

Our result then becomes:

| £| SDTM Tables

[MyStudy:DM | MyStudy:EC [[MyStudy:V'S |

TRESC VSVSSTRESN VS.VSSTRESU VS VISITNUM VS VISIT VS.VSDTC VS.VSDY
101 mmHg 2 TREATMENT VISIT 2 |2006-04-30T12:48:33 |30
67 mmHg 2 TREATMENT VISIT 2 |2006-04-30T12:48:33 |30
63 beats/min 2 TREATMENT VISIT2 |2006-04-30T12:48:33 |30
88.1 kg 2 TREATMENT VISIT2 |2006-04-30T12:48:33 |30
256 kg/m2 2 TREATMENTVISIT2 |2006-04-30T12:48:33 |30
103 mmHg 2 TREATMENT VISIT2 |2006-04-30T12:59:33 |30
58 mmHag 2 TREATMENT VISIT 2 |2006-04-30T12:59:32 |30
65 beats/min 2 TREATMENT VISIT 2 |2006-04-30T12:58:33 |30
100 mmHg 3 TREATMENTVISIT 3 |2006-05-01T12:48:00 |31
70 mmHg 3 TREATMENT VISIT 3 |2006-05-01T12:48:00 |31
62 beats/min 3 TREATMENT VISIT 3 |2006-05-01T12:48:00 |31
a8 kg 3 TREATMENT VISIT 2 |2006-05-01T12:48:00 |31
256 kgim2 3 TREATMENT VISIT 2 |2006-05-01T12:48:00 |31
108 mmHg 3 TREATMENT VISIT 3 |2006-05-01T12:54:08 |31
T4 mmHn 3 TREATMFNT VISIT 2 AO0R-05-01TA2-R4:08 131

How the visits are exactly named is of course up to the mapper. This is just an example.
Also, do not forget to add the visit numbers and names to the TV (trial visits) dataset.

The baseline flag

The last mapping we want to do is the one for the ,,baseline" flag (VSBLFL). How to do that is to
be decided on by the sponsor. Often, the baseline flag measurement is assigned to the last
measurement for each test before first exposure to the study treatment.

As there are different ways to generate a mapping for the baseline flag, depending on how the
reference start date is set and what needs to be taken as the baseline flag, we developed a separate
tutorial "Generating baseline flags". It explains these different ways in great detail.

Please use this tutorial for understanding the different ways of assigning the baseline flag.

Also remark that as of SDTM-IG 3.3, a new variable -LOBXFL (Last Observation Before
Exposure Flag) has been added’. Our SDTM-ETL software already implemented an algorithm for
calculating the values for this new variable. It requires a post-processing step, which can be
initiated at execution time using the checkbox "Perform post-processing for assigning "LOBXFL"

(&) X

ODM file with clinical data:
|C:18DTM-ETL\TestFiIESIODM‘I-31.I'u1\,rStu dyMew_ODM_1_3_ClinicalData_120_subjects xml

Browse...

[| MetaData in separate ODM file
Browse...
[] Administrative data in separate QDM file
Browse...
[] Save output XML to file

Browse... |

@ Perform post-processing for assig_mwx,FD
[] split records = 200 characters to SUPP-- records
Move Relrec Variables to Related Records (RELREC) domain
View Result SDTM tables
[] Save Result SDTM tables as SAS XPORT files

[| Move non-standard SDTM Variables to SUPP—
[] Try to generate 1:N RELREC Relationships
[| Adapt Variable Length for longest result value

7 Also see our article ,,Why LOBXFL should not be in SDTM", which can be found at:
http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html

http://www.xml4pharma.com/SDTM-ETL/Generating_Baseline_Flags_3_1.pdf
http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html"
http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html"
http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html"

We will further discuss the automated generation of -LOBXFL variables in a separate tutorial.

