
SDTM-ETL 4.2 User Manual and Tutorial

Author: Jozef Aerts, XML4Pharma

Last update: 2023-04-30

Tutorial: Working with hypervertical structures

Table of Contents

Introduction.. 1
An ODM example with the classic structure ... 1
An ODM example of a hypervertical structure.. 3
Treatment of classic ODM and of "hypervertical ODM" in SDTM-ETL ... 5

Classic ODM... 5
Hypervertical ODM... 7

Generating the mappings for LBTESTCD and LBTEST .. 10
Generating the mapping for LBTESTCD ... 10
Generating the mapping for LBTEST... 27

Getting the collected values - Using a relative path as an alternative ... 28
Developing mappings and assigning values for LBSPEC, LBSTRESC, LBSTRESN, LBSTRESU34
Timing Variables and date and time formatting... 35
Conclusions.. 38

Introduction

Hypervertical structures, in database theory also entity-attributes-value (EAV) tables, with rows
containing a parameter name (key), parameter label/description and parameter value, are first
somewhat unusual when generating SDTM, this although SDTM itself, at least for the Findings
datasets, is also a hypervertical structure (-TESTCD, -TEST, -ORRES).

Whereas in classic ODM, data is organized hierarchically in visits (StudyEvent), forms (Form),
subforms (ItemGroup) and the data themselves (Item), for hypervertical structures, the visit, the
form and (when applicable) the subform are just fields from the table.

Especially in Phase 1 studies, one will find such data structures, especially when the ODM is
generated from e.g. CSV or SAS files, e.g. as generated using the ODMGenerator software.

In SDTM-ETL 4.2, we added new features and wizards for making it easier to work with such
hypervertical structures.

An ODM example with the classic structure

In classic ODM, all data is organized per subject visit, per form, per subform, per datapoint. For
example:

http://www.xml4pharma.com/CDISC_ODM_Generator/index.html

This means that for each data point, there is only a single "ItemData", with the "ItemOID" being the
identifier (pointing to an "ItemDef"), and the value of the data point located in the "Value" attribute.
For example:

In this case, also the unit of measurement is within the same "ItemData" element as a child
"MeasurementUnitRef" element, pointing to a "MeasurementDef" in the metadata.
The metadata then are:

even showing e.g. rangechecks

and for the unit of measurement:

also nicely demonstrating the "internationalization"

An ODM example of a hypervertical structure

The following figure shows a snapshot of an ODM structure which was obtained from a CSV file
using the ODMGenerator software:

http://www.xml4pharma.com/CDISC_ODM_Generator/index.html

describing the metadata of what was originally a row in the CSV file.

The codelist generated by the ODMGenerator for the parameter name is then e.g.:

A data record is then e.g.:

Where the parameter name is "Alanine Aminotransferase", coming from a group "BsChem_A"
(Blood Serum Chemistry), with a result of 13 U/L.

This means that the information about a single data point is now not within a single "ItemData"
anymore as in classic ODM, but spread over different "ItemData" elements within the same
"ItemGroupData", in our case over "Activity Name", "Parameter Name", "Parameter Value" and
"Unit". Typical for such structures is also that information is redundant. E.g. "Study ID", and
"Subject Number" will also be found at higher levels of the ODM, i.e. in
"ClinicalData/@StudyOID" and in "SubjectData/@SubjectKey".

Treatment of classic ODM and of "hypervertical ODM" in
SDTM-ETL

Classic ODM

In "classic" ODM, one will see a single tree item for each data point definition on the left side. For
example:

defining 3 data points "weight", "systolic blood pressure" and "diastolic blood pressure".
For each of them, when applicable, one or more allowed units of measure can be defined:

For mapping to SDTM. one can then simply drag-and-drop one of the tree items to the
"VSTESTCD" cell:

and then, with the wizard that is showing up, indicate that one want to have an SDTM row for every
visit and also for "Systolic BP" and for "Diastolic BP", with the identifier of the item ("ItemOID")
being mapped to the controlled terminology for VSTESTCD:

This then starts the "Mapping Wizard", as explained in many other of our tutorials.

For VSORRES, one will then do the same drag-and-drop, but then wanting to retrieve the "Value"
from the item, not the identifier:

The further treatment of SDTM/SEND generation for "classic" ODM is explained in the many
tutorials that can also be found on our website.

Hypervertical ODM

In ODM with an "hypervertical" structure, an Item will no longer represent a single data point any
more, but just representing one of the many attributes of the "entity-attribute-value" structure:

http://www.xml4pharma.com/SDTM-ETL
http://www.xml4pharma.com/SDTM-ETL

Or when one chooses to display with the OID identifier (menu "View - ODM tree with OIDs"):

with the values of "Parameter Name" (OID "IT.ParameterName") essentially representing the data
point definitions, i.e. the "entities".

We can see the list of the entities by navigating to the codelist "CL.IT.ParameterName" in the ODM
tree:

or, more easily, select "Parameter Name" (IT.ParameterName) and then use the menu "View - Item
CodeList Details", leading to e.g. :

Generating the mappings for LBTESTCD and LBTEST

All the following only applies to the case of ODM with an hypervertical structure. The "classic
ODM" case is explained in many other of our tutorials.

Now, let's start with trying to generate an SDTM dataset for LB (Laboratory Test Findings).

Generating the mapping for LBTESTCD

We first generate the mapping for LBTESTCD, which usually is the "looping variable", i.e. we will
iterate over all the values for which there is an entry in the ODM or "one record per lab test result
per subject". In the SDTM table, we can see that LBTESTCD is the "looping variable" as it has a
light-blue border on the cell:

So, for obtaining a value for LBTESTCD, we must drag-and-drop the "Parameter Name" from the
ODM tree to the SDTM "LBTESTCD" cell, after we created a study-specific instance of LB:

leading to the first wizard:

We immediately check the checkbox "Generalize for all StudyEvents", as we want to capture lab
data for all the visits, and not for one single visit.

The choice "Import XPath expression for another ..." with choice for "ItemOID" is automatically
selected in the case of -TESTCD variables. This is also the most obvious choice in the case of
"classic", i.e. non-hypervertical ODM structures, as in that case, the OID ItemOID represents the
test itself (e.g. "Albumin", "Bilirubin", ...).
In the case of a "hypervertical" structure, this is however not the case anymore, where the test name
essentially is in the "Value" of the ItemData (see section "An ODM example of a hypervertical
structure").
So we need to check the radiobutton "Import XPath expression for ItemData Value attribute ...":

After clicking OK, the second wizard is displayed:

As we want to map each of the "activities" to an SDTM LBTESTCD (which is under CDISC
controlled terminology), we select the radiobutton "Use CodeList from the SDTM Variable", and
then click "OK". This leads to:

Very often, using the "CodeList-CodeList" mapping wizard is the smartest choice, as it allows some
automation (see further on). However, we do not want to map every activity name to a value for
LBTESTCD, as there can be hundred of such, and only a small part of it may be lab tests.
New in SDTM-ETL 4.2 is therefore the checkbox "First make a pre-selection of the ODM coded
values", which we must check in order to be able to make such a pre-selection:

Clicking OK then leads to:

Now it is clear that the parameter "COVID protection" is not about a lab values, so we do not want
to map it to LBTESTCD.

At this point, it is often clever to not to try to map each lab test to LBTESTCD, but to limit the
selection to a group of lab tests that belong together, e.g. serum chemistry tests. A look into the
annotated CRF can often help in making the right selection.
One can then generate another instance of the LB domain e.g. for "Urinalysis", "Hematology",
"Coagulation", etc.. This mechanism is often called "split data sets", which essentially is a false
name, as we do not split data sets, but generate different ones right from the start.
Having different data sets for different categories for lab tests is also advantageous for the
(regulatory) reviewer, as LB datasets can easily grow to millions of records, making it difficult to
review them.

In our case, we only want to include serum chemistry tests, and thus start selecting:

The tooltips, representing the "decoded" values often help making the right selection, as well as a
look in the annotated CRF on the "Blood Serum Chemistry" page (activity with ID BSChem_A and
BSChem_Gluc):

Remark that when one misses one, or has one too much, one can later still correct in the mapping
script, but this requires a little bit of understanding of XPath expresssions (see later). Of course, one
can also always do the drag-and-drop over again, and overwrite the prior mapping.

Clicking "OK" then leads to:

showing the "CodeList-CodeList Mapping Wizard". There here are over 20 codes from the ODM
side to match.

Depending on how the ODM codelist was constructed, one can also get more details by checking
the checkbox "Show ODM decoded values":

As there are over 2,000 lab test codes for LBTESTCD, selecting the right one can be a bit difficult,
as it requires a good understanding about CDISC controlled terminology and how it works.
One can however always try the "Attempt 1:1 mapping" button, which allows to partially automate
the process, i.e. the wizard will then propose mappings based on word similarity (for coded and
decoded value). So, we will give it a try. Click the "Attempt 1:1 mapping" button, and see what is
happening. It will take some time, so maybe this is a good time to go for a cup of tea or coffee ...
One can also check the "Also use CDISC Synonym List" to increase the probability of a good
match, but at the cost of searching time.

The result is:

One should now carefully check each of the proposed mappings. For example, for "ALAT", the
SDTM code "ALA" is proposed, for which one may have some doubts. Using the "Search" button
on it, one can then look for what "ALA" means and finds:

which is clearly is not what one wants. Further searching leads to:

which looks to be the better choice. Clicking "OK", and then wait 1-2 seconds, leads to:

now selecting the correct choice and mapping.

Also using the CDISC-Library browser (https://library.cdisc.org/browser/) can help a lot in making
the right mapping decisions, e.g.:

Generating all these mappings between "local" lab codes and CDISC-CT can be tedious. Don't

https://library.cdisc.org/browser/
https://library.cdisc.org/browser/

blame us - blame CDISC1!

At the end, we have the following mappings:

It might be that one cannot find a mapping for a certain test, as there is no CDISC controlled
terminology (yet). In that case, just select "blank" (empty), and assign an own invented code (8
characters maximum) later in the mapping script itself´.

At this point, it is very interesting to also check the checkbox "Generate subset codeList ...", which
will generate a LBTESTCD codelist with only, the LBTESTCD codes that are used in this mapping,
and that is stored in the underlying define.xml. This will clearly show the reviewer which of the
SDTM codes were used for this variable.
In the case of different datasets for different types of lab tests (chemistry, hematology, urinalysis, ...)
one will later than assign that codelist to the "value list" with e.g. a "where clause" with "WHERE
LBCAT=CHEMISTRY".

Also, if one often has these local lab test codes, one can store the mappings to a "Company
synonyms list", so that one can reuse these mappings later studies:

1 CDISC still refusing to use the LOINC code as the real identifier for lab, microbiology and vital
signs tests.

Now clicking "OK" leads to:

This list is then added to and stores in the folder and file "Company_CT/Company_CT.txt, which
then looks like:

One sees that it already contains some older entries, and that the new have been added.
These entries have the CDISC-NCI code for the SDTM controlled terminology, followed by the
company synonym, as present in the ODM codelist (decoded values).
We use the CDISC-NCI code, as in some cases, the "submission term" changes between codelist
versions, and the CDISC-NCI code is the real identifier.

This list can then later be used (e.g. in other studies) for searching a suitable codelist mapping by
checking the checkbox "Also use Company Synonym List". This will then not only make the search
much faster, but also to better mapping results.

The mapping script then generated is:

One can then still edit this mapping script, e.g. when one did not find a CDISC code for a test, and
want to assign ones own one.

Now have a look at the first non-comment line in the script (one can use the button "Full-screen
Transformation Script Panel" for a better experience:

The "xpath()" function selects one or more paths to the ODM structure.
Important here is to understand that the square brackets [.....] mean a selection (or "where"
statement), in XPath language called a "predicate".
So, for "StudyEventData" we see no square brackets, meaning that we do not select any visit or set
of visits, i.e. we take all visits.
For "FormData", we select the form with ID "FO.DEFAULT" - due to the hypervertical structure,
there is only one form, and for ItemGroupData we select the one with ID "IG.DEFAULT", as also
here due to the hypervertical structure, there is only one ItemGroup (i.e. one section in the form).

For selecting which items are taken into account, we find:

followed by, on the right:

i.e. we only take the items for which the parameter name ID is "ALAT", "ASAT", ... down to
"LabGluc".
If we now still want to add or remove an item to the selection, we can simply edit the XPath
selection expression by adding or removing "or @Value="..." parts.

After having developed our mapping, we of course want to test it on some real data (this can also be
mock data when one starts using SDTM-ETL even before the real start of the study). To do so, use
the menu "Transform - Generate Transformation (XSLT) Code for SAS-XPT":

which then results in:

as there are 2 "flavors" of ODM files with clinical data. 90% of the users of ODM use the "non-
typed ItemData". When the ODM is generated from CSV or SAS files using the "ODMGenerator",
it also uses "untyped ItemData". After clicking OK, we get:

The reason that this (intermediate) XSLT script is shown, is that some users want to save it to file,
to later use it in "batch" generation of SDTM datasets, sometimes even in an automated process,
e.g. when new data come in every night, or once a week.
One can have the software skipped this step by using the "Options" menu, and check the box "Skip
display of generated XSLT". Some users however also use it for debugging when some mappings
do not deliver what they expect.

Then click "Execute Transformation (XSLT) Code", and provide an ODM file with the clinical
data:

During development, one will usually not want to actually generate SAS-XPT files, so one can
leave the checkbox "Save Result SDTM tables as SAS XPORT files" unchecked. If one wants to
have the XPT files (e.g. for discussing the mapping results with colleagues"), one can of course
check the checkbox and provide a directory to which the XPT files need to be written to.

In our case, clicking "Execute Transformation on Clinical Data" leads to:

One sees that the "sequence numbers" LBSEQ are automatically created and that they restart at "1"
for each new subject, as required by the SDTM Implementation Guide:

If you haven't done before yet, it is now a good idea to save your work using the menu "File - Save
define.xml".

Remark: every N minutes (default: 5 minutes) your work is automatically saved as a define.xml in
the directory "define_autosave". For example:

You can change the interval time for "autosaving" using the menu "Options - Properties", and then
changing the value in the field "":

Generating the mapping for LBTEST

If, during the CodeList-CodeList mapping one has also checked the checkbox "Also create a subset
codelist for the corresponding LBTEST ...":

then a mapping script will also be generated for LBTEST, which can then be used and even edited
when necessary. If one could map all ODM codelist terms to SDTM codelist terms, there is
however an easier way to generate the LBTEST values that correspond to the LBTESTCD values
(as there is a 1:1 relationship).

Just double-click "LB.LBTEST", and the following dialog is displayed:

and when clicking "Yes, please", the mapping for LBTEST just reduces to:

Essentially stating: for LBTEST, take the "decode" values of the codelist that was assigned to
LBTESTCD. When then executing the mappings, this leads to:

In the case that no "decode" can be found, the value for LBTEST will just remain blank, as one can
e.g. see in row 19, where we still have "TODO" for LBTESTCD.

Getting the collected values - Using a relative path as an
alternative

In a "normal" ODM, the "Value" attribute of an item will contain the measured value, e.g.:

<ItemData ItemOID="IT.SYSBP" Value="110"/>

In a "hypervertical" structure, one Item will contain the name (parameter) of the test, and another,
the value. For example:

where the value of the measurement is in another ItemData, with OID "IT.ParameterValue". So
what to do?

The first way is to use the classic way to just drag-and-drop, this time from "Parameter Value" to
LBORRES:

One can now just use "Import XPath expression for ItemData Value attribute ...":

leading to a mapping script:

and to the result when executing the mappings:

and similar for the unit, by drag-and-drop from "Unit" to LBORRESU:

leading to the result:

Reason is that the generated transformation (in XSLT) will look for the shortest path between the
items one is iterating over (and which correspond to LBTESTCD) and the "ItemData" for the
"Parameter Value" and "Unit" respectively.

However, this sometimes may go wrong, especially when one has changed the XPath expression for
LBTESTCD. In such cases, there is however an easy method to still get everything right.

Essentially, the LBTESTCD is e.g. retrieved from the "ItemData" with
ItemOID="IT.ParameterName" with value "ALAT":

and the relative path to the captured value is simply:

../ItemData[@ItemOID='IT.ParameterValue']/@Value

meaning: go one level up (".."), then go down to the ItemData with the "ItemOID"
"IT.ParameterValue" and then take the value of the "Value" attribute. Schematically:

So, the captured values can also be retrieved by the very simple script:

$LB.LBORRES = xpath(../ItemData[@ItemOID='IT.ParameterValue']/@Value);

Especially somewhat advanced users with some XPath knowledge prefer this method, writing their
own XPath expressions, as it leads to clearer code and is more "bomb proof" than using the "drag-
and-drop" method.

Similarly for LBORRESU:

and leading to exactly the same result as above.

So, if one encounters problems with retrieving values for --ORRES and --ORRESU variables (but

also for other variables like timing variables) in ODMs with hypervertical structures, the "xpath"
method is always a good alternative.

Developing mappings and assigning values for LBSPEC,
LBSTRESC, LBSTRESN, LBSTRESU

We will not go into much detail about doing unit conversions to "standardize" in LBSTRESN,
LBSTRESC (usually a copy of LBSTRESN in case of numeric values) and LBSTRESU
("standardized unit"). This is well explained in other tutorials, such as "Performing Unit
Conversions in SDTM-ETL" and "Using RESTful Web Services".
Especially when the LOINC code is available of the test, unit conversion from "US conventional"
to "SI" units and the other way around, is very easy, and can be fully automated without the need
for "conversion tables. Also, the regulatory requirements for the use of units differs between
regulatory authorities, and even sometimes between reviewers within the same authority.

For LBSPEC, the case is simple here. As we limited our initial selection to blood serum tests, we
can simply hard code as:

$LB.LBSPEC = 'SERUM';

In case of different specimen for different tests, one will either be able to use the "CodeList-
CodeList Mapping" wizard (as also LBSPEC is under controlled terminology by CDISC), or using
a relative simple "if-elsif-else" structure (see the base tutorials).

This then leads to:

http://www.xml4pharma.com/SDTM-ETL/tutorials/Performing_Unit_Conversions_SDTM-ETL.pdf
http://www.xml4pharma.com/SDTM-ETL/tutorials/Performing_Unit_Conversions_SDTM-ETL.pdf
http://www.xml4pharma.com/SDTM-ETL/tutorials/RESTful_WebServices_v_4_0.pdf

Timing Variables and date and time formatting

Some may already have seen that the collection date is formatted in a somewhat unusual way:

Even more complicated is that in some cases the time part is missing in which the value for
"AssessmTime" is "U", and that in some cases, also the date itself is missing, e.g. when the test was
not done, but there is still an entry in the source data. In such a case, one will need to decide
whether to include that data point, or exclude such "not done" data points without a date or time
right from the start. The latter can lead to somewhat more complex XPath expressions for
LBTESTCD.

However, the SDTM standard requires that dates and times need to be formatted in ISO-8601
format. This then requires a mapping script like:

This script can be used over and over again for a lot of --DTC variables, just by copy-and-paste.
However, if one usually obtains dates and times in this somewhat unusual format, it is well worth to
invest some to and develop a "custom function" in XSLT. Such a custom function can e.g. be found
in the file "functions.xsl" in the directory "stylesheets", as the "my_DateTimeToIso" function,
which transforms dates and datetimes formatted as "ddMMMyyyyTaa:bb:cc" to ISO8601 date and
datetime:

The date/time format we have in our case (see above) is only slightly different from the one used by
the "my_DateTimeToIso" function, so that one can easily adapt it, or add a new one based on this
example function. Such "custom functions" of course need a bit of time to develop and test, but this
investment is very well worth spending. And of course you can always ask us to develop a "custom
function" for you.

For the timing variables VISITNUM and VISIT, one can again use drag and drop, starting from the
StudyEvent level, or use a relative path in the script. For example:

as the StudyEvent-OID values are "SE.0", "SE.1, ... "SE.99".
The XPath expression essentially means: "go three levels up (to StudyEvent) and take the value of
the StudyEventOID attribute".

For the -DY variables, one will probably want to first generate a "GLOBAL" domain, to store the
reference date that can then be used in all mappings. Please see the tutorial "Creating and working
with Subject Global Variables".

http://www.xml4pharma.com/SDTM-ETL/tutorials/Creating_working_Global_Variables.pdf
http://www.xml4pharma.com/SDTM-ETL/tutorials/Creating_working_Global_Variables.pdf

Conclusions

Working with ODM files representing "hypervertical" structures in SDTM-ETL is slightly different
from working with "classic" ODM files where each Item ("ItemDef" - "ItemData" pair) represents a
single test or question on a form or from a data transfer.

In the case of "hypervertical" structures, the most prominent differences are:

- the "Item" in an hypervertical structure no longer represents a single data point, but only one of
the attributes of a test or question, which is represented by the parent "ItemGroup".

- thus, when doing drag-and-drop of an Item that represents the code or identifier for the test (e.g.
"Parameter Name", to a "--TESTCD" variable in a Findings domain instance, one needs to select
"Import XPath expression for ItemData Value attribute (from ClinicalData)" as the latter contains
the identifier of the test or question. See section "Generating the mapping for LBTESTCD".

- In the next step, when the system proposes to use the "CodeList-CodeList Mapping Wizard",
ensure that the checkbox "First make a pre-selection of the ODM coded values" is checked,
allowing to select the codes for the parameters that are representing the tests for the specific domain
(or subset domain).

- when doing drag-and-drop of an Item that represents the value for the test (or question answer),
e.g. "Parameter Value", to --ORRES (or --TERM in the case of Events) variables one can (as in the
case of "classic" ODM), use "Import XPath expression for ItemData Value attribute ..."

- for further "qualifier" SDTM variables such as --SPEC, one can also use drag-and-drop. When this
leads to problems (when one has e.g. manually edited the XPath expression for the selection), one
can also use a relative XPath expression, which usually reduces to something like:
$AA.AAAA = xpath(../ItemData[@ItemOID='XXX']/@Value);
where $AA.AAAA represents the SDTM variable and XXX represents the ItemOID of the item in
the OID structure.

- When dates and date-times in the source are not in ISO-8601 format (required by SDTM) yet, one
will need to generate a mapping script for date/time conversions to ISO-8601. In such a case, one
may consider to generate a function for this in XSLT and add it to the file "functions.xsl" in the
"stylesheets" folder. If there is no in-house XSLT knowledge, you can always ask us to develop
such a function.

