
SDTM-ETL 4.1 User Manual and Tutorial

Author: Jozef Aerts, XML4Pharma

Last update: 2022-07-27

Creating and editing Trial Design datasets

When starting from an ODM file with metadata including SDM-XML (Study Design Model in
XML), it is pretty straightforward to generate trial design datasets from the SDM-XML using the
SDTM-ETL software (see separate manual).

However, not everyone is using SDM-XML yet, and most EDC systems do even not export SDM-
XML. So, how can one generate the trial design datasets when the information is not, or only
limited, in the ODM file with the study metadata?

We have recognized this problem, and added a new module to the SDTM-ETL software: a "trial
design dataset editor". This editor does not only allow to generate trial design datasets from scratch,
but also allows to edit existing trial design in Dataset-XML format, and then save them in either the
modern Dataset-XML or Dataset-JSON format, or in the outdated SAS-XPT format, which is
unfortunately still required by the FDA1.

The editor can also be run in standalone method (so without using the SDTM-ETL software). This
is explained later in this document.

In this tutorial, we will demonstrate the use of the "trial design dataset editor" using the TE (Trial
Elements) TA (Trial Arms) as an example. Some additional information will be provided for the
case of TS (Trial Summary), as this is a somewhat special case.

Starting the editor from within SDTM-ETL

After having loaded an SDTM template or existing define.xml with SDTM-ETL mappings, create a
study-specific instance of the desired domain, in this case the TE and TA domains. Do so by
dragging the "TE" and the "TA" row from the template rows to the bottom of the table. This e.g.
results in:

1 SAS-XPT ("transport 5") is an over-30 year old format meant to exchange data between IBM mainframe and VAX
computers (do you still have one at home). It is extremely inefficient with disk space and very software-unfriendly.

http://cdisc.org/study-trial-design
http://cdisc.org/study-trial-design

This ensures that the metadata for your study-spe cific TE and TA datasets will be included in the
define.xml file. You will also be able to use the trial design dataset editor without having dragged-
and-dropped the TA or TE row (or one of the other "trial design" rows), but in that case, the system
will later require you to define the location of a define.xml file from which the metadata will then
be taken.

It is important to realize that the generation of the trial design dataset is always driven by the
metadata of a define.xml, be it the currently loaded define.xml (either using the TA or TE template
row, or using the study-specific instance), or an external define.xml file. So it is important that you
have a good set of metadata for your trial design dataset, such as having set appropriate maximal
lengths (especially when outdated SAS-XPT needs to be generated), and having assigned codelists
for specific variables.

If you have created a study-specific instance of your trial design domain (such as CES:TA/CES:TE
in our example), you might first want to work on the metadata for its variables, setting maximal
lengths, adapt data types when necessary, and especially assign codelists (e.g. for the EPOCH
variable). Changing metadata for SDTM/SEND variables is explained in the other manuals.

In order to start generating a new trial design dataset or editing an existing one, now use the menu
"Edit - Trial Design Dataset":

This will start up a separate window, which is the starting window for this module.

Starting the editor in standalone mode

There will be cases when you want to generate or edit a trial design dataset without starting SDTM-
ETL. You can do so by double-click the icon for the file "TrialDesignEditor.bat".
First of all, the system will ask you whether you want to work with SDTM or SEND, and ask for
the version of the IG, and for a version for the controlled terminology.

The "Trial Design Dataset Editor" start window will then appear.

Working with the Trial Design Dataset Editor

When the software has been started, either from within SDTM-ETL, or in standalone mode, the
following start window is displayed:

In case the software was started from within SDTM-ETL, the radiobutton "Use metadata from
currently loaded define.xml" is preselected. This means that the define.xml from the SDTM-ETL
will be used (in its current state). One can however then also choose to choose another define.xml
file containing the metadata for the trial design dataset(s).
In case the software was started in standalone, the radiobutton "Use metadata from external
define.xml file" is preselected, and the radiobutton "Use metadata from currently loaded
define.xml" is disabled. So, in the latter case, it is always necessary to provide a define.xml file
containing the trial design metadata.

In this tutorial we will continue with the option "Use metadata from external define.xml file".

First select the correct version of define.xml that you are working with. This is important as
otherwise the file will not be parsed. In our case, we use a define.xml v.2.0 file. Select it using the
"Browse" button on the right lower corner of the window. For example:

Now you need to decide whether you want to create a new trial design dataset (from scratch) or that
you want to work on an already existing trial design dataset in Dataset-XML format.
We will first work with the case that one wants to start a completely new trial design dataset.
In order to do so, select the radiobutton "New Trial Design Dataset" and select a trial design domain
from the list. For example:

The tooltip on the selection shows the full name of the dataset.

The use of the checkbox "Populate TS table …" will be explained later. It is disabled for all choices
except for TS.

Generating the TE dataset

Let us first generate the TE (Trial Elements) dataset. Reason is that when generating the TA dataset,
we can reuse variable values from the TE dataset, i.e. ETCD (Element code) and ELEMENT
(Element Name). How this reuse is done is explained later on.

So we select "TE":

and click "OK".

First a dialog is shown containing the most important information:

And after clicking "OK", the table to be edited appears:

As one can see the fields for STUDYID and DOMAIN are pre-filled, as they always have the same
value.

When hovering the mouse over a column header, the metadata information is displayed:

One can now start adding the information. This may e.g. lead to:

It is always a good idea to check the correctness of the structure using the button "Validate dataset
against define.xml". For example, when a value for TESTRL is missing ("required" variable), one
will get:

i.e. the cell is colored red and a message is displayed.
Also, when a column is of type "integer" (e.g. TAETORD in TA), and one types something in that is
not an integer, the cell will get a red border, prompting to correct the value.

The use of the button "Validate dataset against CDISC SDTM and FDA rules" will be explained
later.

Once everything is fine, one can save the TE dataset to file in either SAS Transport 5 (XPT), the
new Dataset-JSON format, or Dataset-XML format.

The latter can then later be used to reload the dataset contents and make changes or additions. So, it
is always recommended to at least to save using Dataset-XML format.
SAS Transport 5 (XPT) is added as the regulatory authorities still mandate this outdated format. It
is however expect that it will soon be replaced by Dataset-JSON format, so the latter is already
supported.
When saving to SAS-XPT, it is recommended to check the checkbox "Update variables for maximal
length in define.xml when writing to file". This will ensure that the generated XPT is as compact as
possible2.

2 SAS-XPT is well-known to be a very inefficient file format.

https://wiki.cdisc.org/display/ODM2/Dataset-JSON
https://www.cdisc.org/standards/data-exchange/dataset-xml

One also sees that there is a menu "Save as CodeList". Reason is that the values for ETCD and
ELEMENT can then be saved as a codelist, so that it can be used in other datasets (such as TA,
where ETCD and ELEMENT also appear). This will not only avoid "typing over", but also allows
to guarantee data consistency.

When the menu "Save as CodeList" is used, the following dialog appears:

One can either select to save the codelist to an external file, or to immediately add it to the
define.xml. The latter will only be possible when having started the Trial Design Dataset Editor
from within SDTM-ETL(so not in "standalone" mode).
When "Save to external file" ic clicked, one is prompted to provide a location where the codelist
will be stored as an ODM-XML file. One can then still later import it into SDTM-ETL using the
menu "Insert - xxxx".

Values for the OID and Name of the CodeList are already suggested. One can of course still change
these.

The additional checkbox "Also generate CodeList for the variable ELEMENT ..." is very
interesting, as this allows to also generate a codelist with "decode" values, such as "Screening",
"Placebo Treatment". This is useful as to the bad design of SDTM ("everything is a table") and
variables such as ELEMENT in SDTM require their own separate codelist, this although the same
information is also essentially present in the codelist for ETCD.

So we may have something like:

When clicking "OK", and all goes well, 2 messages will appear, one about having successfully
generated the file "CES_TE_codelist.xml" and one about having successfully generated the file
CES_TE_codelist_decode.xml". The content of the former looks like:

and of the latter (CES_TE_codelist_decode.xml):

When selecting "Add to define.xml", a similar dialog appears:

The difference being that the codelist will be added to the define.xml, and can be automatically be
assigned to ETCD (first checkbox). Also here, one can have a corresponding codelist for
ELEMENT having being generated, and assigned to the ELEMENT variable.
Also, it will be checked whether the OID already exists, and if so, one will be prompted to change
it, or to overwrite the already existing codelist with the same OID, or to cancel the generation.

A list of the contents of the codelists generated using "File - Save as CodeList" is given below

Domain CodeList
variable

"Decode" CodeList
variable

TE ETCD ELEMENT
TA ARMCD ARM
TI IETESTCD IETEST
TV VISITNUM VISIT
TD TDORDER TDANCVAR
TM MIDSTYPE TMDEF
TX (SEND) SETCD SET

Generating the TA dataset

Similarly, one can now start generating the TA dataset:

One immediately notices the additional button "Load ETCD/ELEMENT CodeList from file or
define.xml". Reason is that the TA domain does not only represent the trial arms, but also how the
trial elements are ordered within each arm3.

When that button is clicked, the following dialog displays:

When "Load from define.xml" is selected, a list of all codelists in the define.xml is shown, from
which one should pick the correct one. In case one loads the codelist(s) from an external file, one is
prompted for its location, and a list of the contained codelists is shown, from which one should pick
the right one. For example:

3 This is essentially bad design: in a relational database, one would have a table for the trial arms, one for the trial
elements, and a "relation" table allowing to define how the elements are ordered within each arm. However, SDTM has
already for a ver long time thrown all first principles of good database design over board.

After clicking "OK", one will notice that the fields for "ETCD" and "ELEMENT" have now been
replaced by dropdowns, like:

and:

thus helping keeping consistency between the TE and TA datasets.

In TA, "EPOCH" is governed by a codelist, so this field also displays as a dropdown. The codelist is
however extensible, so that one must be able to add new terms to it.
To do so, select the "EPOCH" field, and scroll down to the end of the list, and select "Other":

A text field dialog is then displayed, allowing to enter a new (extended) term for "EPOCH":

and when clicking "OK", the dropdown list is updated and the new term automatically selected:

A full "Trial Arms" design may then look like:

which can then be saved to file, either as Dataset-XML (for later changes), modern Dataset-JSON,

or outdated SAS Transport 5 (XPT) format.

Also here, "Save as CodeList" is very useful, and will save the distinct values of ARMCD and
ARM (as the dataset is not only about "trial arms") either to ODM-XML files, or to the define.xml.
This will then, for ARMCD, look like:

and for the "decode" ARM codelist:

Generating the TS (Trial Summary) dataset

TS (Trial Summary) is another example of a badly designed dataset, a mix of trial design
information and post-study collected information. Essentially it is just a parameter-value list (or
better "Entity - Attribute - Value" table), with some of the values being coded, some being a
number, and some being just free text.
If there are two or more values for the same parameter, this will result in two or more rows ("if you
only have SAS-XPT, everything is a table ...).

When one selects to start generating a TS dataset, an additional checkbox becomes available:

Checking this checkbox is especially interesting when one has or add a large number of TS
parameters: in that case, the table will be filled with all TS information from the loaded CDISC
controlled terminology, and one will then develop the table mostly by deleting rows (for parameters
one doesn't need), and duplicating rows (for parameters with multiple values).
If values for "TSVAL" are coded, this will also be taken into account.
The result with the checkbox "Populate TS table with loaded TS Controlled Terminology" then,
after a few seconds, leads to:

and one can now start adding information and deleting/duplicating rows.

If one has only a small number of TSPARMCD values to submit, one can leave the checkbox
"Populate TS table with loaded TS Controlled Terminology" unchecked. This will lead to a table
where TSPARMCD and TSPARM are not populated yet:

when selecting a TSPARMCD cell, a dropdown is presented:

and when one selects one (e.g. ADDON), the corresponding value for TSPARM is automatically
selected:

To see whether TSVAL is coded, right-click. If it is, a choice list will be displayed. For example, for
TSVAL with TSPARMCD=DOSFRM (dose form):

If one then selects a value, and clicks "OK", the following dialog is displayed:

proposing to automatically populate the fields TSVALCD, TSVCDREF and TSVCDVER.
When clicking "Yes", this then e.g. leads to:

If there is no associated controlled terminology, a message is displayed: e.g.:

Remark that it will be your responsibility to add the correct values for TSSEQ. You will need to
start at "1" again for each unique value of TSPARMCD. Automated assignment of TSSEQ is a
feature foreseen for the next release.

Now have a look at the lower part of the window:

It has 3 "validate" buttons: one to validate the structure against the define.xml requirements. This
just checks whether all "required" fields are filled, nothing more. So, don't expect too much of it.
The second button "Validate dataset against CDISC SDTM and FDA rules", has been put out of
function in version 4.1 of the software. Reason is that we are waiting for CORE, which will be "the

https://www.cdisc.org/core

only truth for validation rules"4.
The third button "Validate TSVAL values against CDISC Controlled Terminology" does exactly
what it says. It takes the value of TSVAL, checks when it is supposed to be coded, and if so,
compares the value against a CDISC codelist, when one is provided. At the same time, it also
checks the 1:1 correspondence of TSPARMCD and TSPARM.

The result of such a validation can e.g. be:

This validation however does not protect you from adding illogical values, like the value for
TSVAL "eighteen years" for AGEMIN. This is as TSVAL is always a string, even when logically,
an integer or e.g. an ISO-8601 duration is expected. Also here, we are waiting for CDISC CORE to
have such rules implemented5.

Remark that whether a value for TSVAL is coded or not may depend on the version of the
controlled terminology used! So, it is always a good idea to use the latest version of all CDISC
controlled terminology.

4 Pinnacle21 does not allow anymore to call their software from within other applications. So, we had to disable that.
Anyway, Pinnacle21 has become famous for the large amount of "false positives" and pretty bad quality of the software.
This is why we decided to completely move to CDISC CORE.
5 Problematic is that the FDA (i.e. Pinnacle21) is changing these all the time, and that they are not always transparent.

