
SDTM-ETL 4.x/5.x: Different ways for filtering:
adding XPath conditions, relative XPath-s,

and using the "xpathfilter" feature

Author: Jozef Aerts, XML4Pharma

Last update: 2026-02-12

Table of Contents

Introduction .. 1
Example case.. 1
Making simple selections through the GUI dialogs ... 2

Excluding specific data points by their value.. 2
Excluding subjects... 21

An introduction to relative XPath-s ... 26
Using relative XPath-s ... 28
Using the "xpathfilter" utility (as of v.4.4)... 34
Conclusions .. 39

Introduction

In most cases, using drag-and-drop and following the wizards, including in-/excluding visits
(StudyEvent), forms, subforms and items will give the user everything that is needed, and
nothing needs to be changed in the XPath expressions that extract the data from the ODM to
populate SDTM/SEND variables.

There are however some very special cases where users want to change or further refine the
XPath expressions to retrieve the data, especially for the "looping variable" (which usually is
the SDTM/SEND "topic variable"). In such cases, the use of relative XPaths for the other
variables can be helpful.

In this tutorial we will explain the different possibilities.

Example case
One of such very special cases is when one has (relative) low-quality data, e.g. data that
should not have made it into the ODM anyway. Of course the best way in such cases is to take
care that a "clean" database is used for the ODM generation. This is however not always
possible, e.g. when the database is not cleaned and closed yet, and data is still being added.
Essentially, this is not bad at all, as it allows to have temporary SDTM/SEND data even while
the study is still running.

Just for the example (don't pin us on whether this is a real scenario ...), we will use the case
that some of the erythrocytes and leukocytes data points in the ODM file with the clinical data
have the value "UNKNOWN", e.g.

and we want to exclude these from the generated SDTM.

In a second case, we will show how to exclude a subject without changing anything in the
ODM file with clinical data.

Making simple selections through the GUI dialogs

Excluding specific data points by their value

When having loaded the ODM metadata and having loaded an SDTM (or SEND) template,
we find the following in the main window:

the ODM items on the left having a cyan background as they have SDTM annotations about
where they belong in SDTM, which is of course great. For example:

On the right side, the SDTM table, we can now drag-and-drop the "LB" row from the
template to the bottom (or use the menu "Edit - Copy domain/dataset" and "Edit - Paste
domain dataset"), leading to:

We call this a "study-specific instance of LB".

Now, if we select "Erythrocytes" on the left in the ODM tree, and select our ODM file with
the clinical data, and then use the menu "View - ODM Clinical Data" (with "Generalize for all
StudyEvents" checked, we find:

As always, we start with generating the mappings for the SDTM "topic" variable, which is in
this case LBTESTCD. So we drag-and-drop from "Erythrocytes" in the ODM tree on the lefz
to the SDTM cell "LBTESTCD" on the bottom right. This then leads to:

As the system knows that we do not want to get the collected value (which is a number), but
the identifier of the item, it already suggests "Import XPath …" for "ItemOID".
As we want to get the items for all visits (named "StudyEvents" in ODM), we check the
checkbox "Generalize for all StudyEvents". We also want to also include "Leukocytes", so we
check "Generalize for all Items" and then click "Only for …":

leading to:

we check "Erythrocytes" and "Leukocytes" to take care that only these are selected, as we do
not want to e.g. have "Laboratory ID" mapped to LBTESTCD:

After clicking "OK", we get:

Already notice the checkbox "View/Edit XPath expression …". If we check it:

and then click "OK", we get:

As very often, we will use the "Mapping Wizard", so we click that button, leading to:

As the SDTM associated codelist is large, it suggests us to first generate a subset codelist, but
we are lazy, and just click "No, thanks …", leading to the next "wizard"1:

1 As the SDTM codelist for LBTESTCD is very large, this may take a little bit of time.

with the checkbox "Show ODM decoded values" allowing us to see some more information
for the case we want to assign values for LBTESTCD using the dropboxes on the right.
We are however once again lazy and just use the button "Attempt 1:1 mapping", leading to:

which looks very good2.

and when we then click "OK", as we checked "View/Edit XPath expression ..." before, we
get:

Notice the "Condition" for ItemData", which we will use later.

Clicking "OK" then leads to the generation of the mapping script:

2 The "Attempt 1:1 mapping" button starts an algorithm based on word similarity.

and if we use the "Full-screen" button:

nicely showing that the XPath expression will only select items for "Erythrocytes" (RBC) and
"Leukocytes".

We can now continue with adding the mappings for other major variables such as "LBTEST"
and "LBORRES".

After clicking "OK" several times to return the main window, we find:

we see that the cell for LBTESTCD is "grayed out", meaning there is a mapping available,
and the cell for LBTEST is still red, meaning it is a "required" SDTM variable. If we double
click it, another wizard appears:

suggesting to just making it easy by using the "decode" value of LBTEST, and not to have to
go through the whole process again. If we click "Yes, please", the mapping script is
automatically created as:

After clicking "OK", we can now drag-and-drop "Erythrocytes" from the ODM tree to the cell
LBORRES:

and the first "wizard" is popping up again, but this time suggesting to take the "Value":

where we also see that the system has remembered that this should be applied to all visits
(StudyEvents) and only for "Erythrocytes" and "Leukocytes".
We check the checkbox "View/Edit XPath expression" again, just for the demonstration for
now. Clicking "OK" leads to:

showing us the different "Selections" on each of the level of "StudyEvent" (visit), "Form",
"ItemGroup" (subform) and "Item".

If we do not know XPath yet, we can here learn …:
everything that is between square brackets is a "condition" (in XPath they call it "predicate"),
and thus can be compared e.g. with a "WHERE" in SQL.
So the line [@ItemOID='I_LB_RBC' or @ItemOID='I_LB_WBC']
means: select the items for which the identifier attribute (@ItemOID) is either "I_LB_RBC"
or "I_LB_WBC", i.e. selecting the erythrocytes and leukocytes data points.

The clicking "OK" leads to the mapping script:

Clicking "OK" until we are in the main window, then we see that also "LBTEST" and
"LBORRES" are "grayed out", as we have mappings for them now:

Fine! Let's generate some SDTM now …

For this, we use the menu "Transform - Generate Transformation (XSLT) Code …".
Depending on the version of SDTM-ETL, this is just one choice or divides between the
different output formats. In 4.6 e.g. this still is:

anyway leading to:

In 80% of the cases, you will have the "non-typed" ItemData as most of the EDC systems
export this, whereas a minority of the EDC systems use "typed ItemData".
If you don't know, just ask them, or … just try …

This then leads to an intermediate screen:

If you don't like it, you can skip this intermediate window using the menu "Options" and
check the checkbox "Skip display of generated XSLT". Most users however don't mind (or
really want to see the generated XSLT3). Click "Execute Transformation (XSLT) Code to
continue, leading to:

3 XSLT means "XML Stylesheet Transformation Language". See e.g.:
https://www.w3schools.com/xml/xsl_intro.asp

https://www.w3schools.com/xml/xsl_intro.asp

Ensure that you have the correct file with clinical data in the filed "ODM file with clinical
data" and then click "Execute Transformation on Clinical Data". This will then show the
generated SDTM table:

There is no need yet to already generate SAS-XPT datasets (or Dataset-JSON datasets in bear
future) as we are still "developing" …
We now see that we do have a data point with LBORRES is "UNKNOWN".
Also notice that the system states that 80 records have been generated.

Now we want to filter out such data points. How do we do this?

Let's restart from the first step where we generate the mapping for LBTESTCD. Best is to
delete all existing mappings by editing them by a double click on the cells that have a
mapping and just delete the complete mapping script. We should then see our "original" state
again in which the LBTESTCD, LBTEST and LBORRES SDTM cells are not "grayed out":

Alternative, we can right-click a cell in the "CES:LB" row, and then confirm that we want to
remove the row:

and then drag-and-drop "LB" from the template again to the bottom, having the same effect.

We then start the drag-and-drop from "Erythrocytes" to LBTESTCD again, do a "Generalize
for all StudyEvents" again, with "Generalize for all Items" and "Only for ..." and selecting
"Erythrocytes" and "Leukocytes":

taking care that also the checkbox "View/edit XPath expression …" is checked.
We then continue the process using the wizards as before, until we come to:

We now want to exclude data points for which the value is "UNKNOWN", so we check the
checkbutton "Edit" for "Condition for ItemData", allowing us to edit the field on the right:

so that we can add an extra "conditions". This requires some basic knowledge of XPath which
one can however quickly learn e.g. at the website "W3Schools".
Conditions ("predicates" in XPath language) go within square brackets, and as we want to
exclude items for which the value is "UNKNOWN", we can e.g. write:

[not(@Value='UNKNOWN')]

but we can also use:

[@Value != 'UNKNOWN']

if we use the former, we can just add it to the end of the XPath condition string for "Condition
for ItemData":

then clicking "OK" leads to the mapping script:

in which we see that we have 2 selection criteria for the item:
- the ItemOID (identifier) must either have the value "I_LB_RBC" or "I_LB_WBC"
- the value of the "Value" attribute may not be "UNKNOWN"

https://www.w3schools.com/xml/xpath_intro.asp

We can now already do a quick transformation run just to ensure that the XPath is a valid
XPath (and nothing more), so after clicking "OK", we again use the "Transform" menu as
before, ultimately leading to:

stating that this time, only 79 records have been generated (was 80 before …).
This however doesn't prove that our selection was right.
So we now do repeat generating the mappings for LBTEST and LBORRES just as before.
After having done so, executing the transformation again leads to an error:

What went wrong?

The reason is that for the mapping for LBORRES, we have:

where we do not have the additional condition for the value not being "UNKNOWN".
So if we do the drag-and-drop again to LBORRES, and allow to overwrite the existing one,
we need to take care that the condition is also added there, i.e.:

and when then executing the mapping again, we get:

and we see that the data point with value "UNKNOWN" has now been excluded.

Excluding subjects

In a similar way, we can also exclude subjects. This however requires a bit of knowledge
about the ODM structure.

In the ODM tree of the clinical data, the hierarchy is:

- ClinicalData
- SubjectData

- StudyEventData
- FormData

- ItemGroupData
- ItemData

Starting from "ClinicalData", each element has an attribute which has the same name, but
with "Data" replaced by either "Key" or "OID" as the identifier
So we have "SubjectKey", "StudyEventOID", "FormOID", "ItemGroupOID", "ItemOID".

So, for an individual data point, the XPath expression will essentially be in the form:

/ClinicalData/SubjectData[@SubjectKey="..:"]/StudyEventData[@StudyEventOID="…"]/Fo
rmData[@FormOID="…"]/ItemGroupData[@ItemGroupOID="…"]/ItemData[@ItemOID="
…"]/…

which we have probably already recognized in the xpath(......) functions we have found in the
mapping scripts.
As in SDTM-ETL, we always iterate over the subjects first, the content of the xpath(…)
function starts from the "StudyEventData".
So, for example, in order to get the first visit ("StudyEvent" in ODM), the XPath expression
line will be like:

$VISIT = xpath(/StudyEventData[@StudyEventOID="BASELINE"])

and if we want to state "all visits", we simply omit the "condition" (predicate):

$VISIT = xpath(/StudyEventData)

To navigate between the "tree nodes", i.e. between the different levels in the ODM tree, we
use the following rules4:

.. go one level up

./ start from the current level

So, in order to select a subject, we need to add a condition that goes up from the
"StudyEventData" level to the "SubjectData" level, and then take the value of the
"SubjectKey" attribute. Lets have a try to exclude the subjects with the SubjectKey="002".

If we start from scratch again, instantiate a "study-specific domain", and drag-and-drop from
Erythrocytes again, go through the wizards, check "View/edit XPath", we come to:

4 These look very like what Linux/Unix users and Windows users that use the command line already know

If we now want to exclude subject "002", we need to add a condition at the "StudyEventData"
level, but need to go up one level up to "SubjectData", meaning we need to use "..".
So the condition for the exclusion becomes:

so that the left part of the mapping script for LBTESTCD becomes:

and when executing the mappings, leading to the result:

and we see that no data for subject "002" is present in the SDTM.

We can then also add the mappings for LBTEST and LBORRES by drag-and-drop, with the
mapping script for e.g. LBORRES being:

and when executing the mappings we get:

This time, we do not get an error, but there is no value for LBORRES either.

We can also add the condition to the mapping for LBORRES as:

but when then executing the mappings, we get an error:

The reason is that the system has a problem comparing the XPath expression for LBTESTCD
(the "looping variable"), and the one for LBORRES, and transforming the latter to a relative
path5.

5 This is currently being fixed in version 5.2

An introduction to relative XPath-s
We do not want to provide a full XPath tutorial here, but just some basics. For a more
advanced tutorial on XPath we can recommend the W3C Schools tutorial. We will also limit
ourselves to "relative" XPaths, as these are the only ones we will use.

In SDTM-ETL, in order to generate "one record per observation", determined as the "looping
variable", which is usually defined as the "topic variable", i.e. --TERM, --TRT, or --TESTCD,
(for SV this usually is VISITNUM - we we want to have "one record per subject per visit"),
all other XPath expressions are recalculated by the software as relative against the XPath for
the looping/topic variable. In some cases of a very complex XPath for the looping/topic
variable, this may lead to problems. In such seldom cases, we may want to use a "relative
XPath" for any of the other variables.
"Relative" XPath-s always start with either "./" or "../", or a combination of both.

Relative XPath starting with
...

Meaning

./ Stay on the current tree node, and do something on this node

./@xxx Stay on the current tree node, and get the value of the xxx
attribute
For example: ./@Value means that we take the value of the
attribute with the name "Value" (XPath is case-sensitive)

../ Go one level up in the ODM tree.
For example: if we are on the ODM "ItemData" level, go
one level up to the "ItemGroupData" level

../../ Go two levels up in the ODM tree.
For example, if we are on the ODM "ItemData" level, go
two levels up, up to the ODM "FormData" level

../../XXX Go two levels up in the ODM tree and then go down again to
the element with name "XXX".
For example, for "../../ItemGroupData", if we are on the
ODM "ItemData" level, go two levels up, up to the ODM
"FormData" level, and then go down again to an
"ItemGroupData" element. Usually, this will be followed by
a "where-statement", which is called "predicate" in XPath
language

[.........] Everything between square brackets in XPath is a
"predicate", so essentially a "where-statement" or "filter".
Predicates are always used in combination with paths
themselves.
For example, if we are on the ODM "ItemData" level, and
we have ../../ItemGroupData[@ItemGroupOID='XXX'], this
means: go two levels up to the "FormData" level, then go
down again to the "ItemGroupData" that has the value
"XXX" for the ItemGroupOID attribute.

We will now explain some usual scenarios where we may want to use a relative XPath
expression in case the one generated by the "drag-and-drop" gives unexpected results. This
should however be very seldom. We will start with the case that the looping/topic variable

https://www.w3schools.com/xml/xpath_intro.asp

leads us to the "ItemData" level. We can see this by that that the XPath expression ends with
something like:

ItemData[@ItemOID='xxx']/@Value or ItemData[@ItemOID='xxx']/@ItemOID

where "xxx" is the identifier of the ItemData data point in the ODM tree.

One typical example is for generating a value for "VISITNUM".
In this case, we want to start by retrieving from the "StudyEventOID" of "StudyEventData",
as "StudyEvent" is the ODM designation for "visit"6.
As the hierarchy in ODM is: SubjectData - StudyEventData - FormData - ItemGroupData -
ItemData, and we are at the "ItemData" level, this means that we need to go up 3 levels, i.e.,
our relative XPath expression will start with: ../../../
and we then want to take the value of the "StudyEventOID" attribute, the relative XPath
expression becomes: ../../../@StudyEventOID.
It can also be that we need the value of the "repeat-key", then the relative XPath expression
becomes: ../../../@StudyEventRepeatKey.

Another typical example is that we need to get the value of another "ItemData" within the
same ItemGroupData group (usually this is called a "sibling"). For example, if, within the
same group, the date of the data collection is captured in the ItemData with
ItemOID="IT.LABDATE", the relative XPath expression becomes
../ItemData[@ItemOID='IT.LABDATE']/@Value

It also may happen that we need information from within another "group", but with the same
form. This means that we need to go up two levels up the the "FormData" level, and then go
down to the "other" ItemGroupData and then to the ItemData level. For example, if the
collection date was captured in the "Common" group in the same form, which often is
something like a "header" of the form. The relative XPath may then e.g. be like:
../../ItemGroupData[@ItemGroupOID='IG.COMMON']/ItemData[@ItemOID='IT.DATE]/@
Value

It will be seldom that one needs to get something from within another form or another visit,
but also for this seldom case, one can develop relative XPath expressions. One will then first
want to go up three levels to the StudyEvent Data, and then to "another" FormData, like:
../../../FormData[@FormOID='FO.xxx']/ItemGroupData[@ItemGroupOID='IG.yyy']/ItemDat
a[@ItemOID='IT.zzz']/@Value

And in very very seldom cases, we may e.g. want to exclude subjects for specific data points,
which means we need to go up to the "SubjectData" level. For example, if we want to exclude
data from the subject "002", the relative XPath expression, when starting from the
´"ItemData" level, will be:
../../../../[not(@SubjectKey='002')]. Remark that this surely is "bad practice" as, if we need to
exclude some subjects, we surely want to this already in the XPath of the looping/topic
variable. For example, for LBTESTCD being the "looping" variable, and we may want to
exclude subjects "002" and "004", we may have
$VS.VSTESTCD = xpath(/StudyEventData[../@SubjectKey='002' or
../@SubjectKey='004']/FormData[@FormOID=FO.VITALS]/ItemGroupOID[@ItemGroupOI
D='IG.VITALS']/ItemData[@ItemOID='IT.VSVALUE']/@Value);

6 The reason that ODM uses "StudyEvent" and not "Visit" is that it wanted to emphasize that this encompasses
more that classic "visits", i.e. it can also be a telephone contact, an extract from an EHR, etc..

Remark the "or" in the predicate. One can also have "and" but this will not often occur.

For the SV (Subject Visits) domain/dataset, the looping/topic variable usually is VISITNUM,
which is 99% of the cases is derived from the "StudyEventData" element.
So the mapping for VISITNUM in SV will then look like:

we first make a temporary variable using the "StudyEventOID"
$VISITOID = xpath(/StudyEventData/@StudyEventOID);
from which we derive a "number", e.g.
if($VISITOID='SE.BASE') {
 $SV.VISITNUM = 1;
} elsif($VISITOID='SE.FIRSTTREAT') {
 $SV.VISITNUM = 2;
…

If we then want to e.g. retrieve the visit date in SVDTC from a data point in the form
"FO.VITALS" in the group "IG.COMMON" in the data point "IT.DATE", we may want to
use:
$SV.SVDTC =
xpath(./FormData[@FormOID='FO.VITALS']/ItemGroupData[@ItemGroupOID='IG.COMM
ON']/ItemData[@ItemOID='IT.DATE']/@Value
with the initial "./" meaning: start at the level of the looping/topic variable, which is
"StudyEventData", and then go down.
If we are at the StudyEvenData level, and we e.g. want to also retrieve the value of the
"StudyEventRepeatKey", we can use the relative XPath
$VISITREPEATKEY = xpath(./@StudyEventRepeatKey);

Other types of "predicates" that can be of use are:
* [first()] : selects the first node, e.g /StudyEventData[first()] selects the first encounter
"StudyEventData" node in the ODM tree. Remark that this will only select the earliest (in
time) visit when the data in the ODM is in chronological order7.
* [1] : this is equivalent to [first()]
* [last()] : selects the last node
* [last()-1] : selects the second last node

IMPORTANT REMARK: In most cases (>95% of the studies), you will never need to write
relative paths yourself. Only if you encounter unexpected results (like VISITNUM being
empty when your XPath generated by drag-and-drop is:
xpath(/StudyEventData/@StudyEventOID)).

Using relative XPath-s
We can however use a "relative path". As we are already at the "ItemData" level for the data
points for the two lab tests, with the "looping variable" taking the ItemOID, all we need to
state is that, instead of taking the ItemOID, we want to take the value of the "Value" attribute.
So we use the relative XPath:

7 This is essentially a requirement of ODM, but in practice ...

stating "at the current node, take the value of the 'Value' attribute".

The result then becomes:

Again, subject 002 has been excluded.

REMARK: in version 4.6 there is a bug that causes an error when using this construct. This
has been fixed in versions 5.0 and higher.

Let us now have a look at the VISITNUM and VISIT variables: we want to derive it from the
"StudyEventOID" attribute of the "StudyEventData" element in the ODM tree.

If we just drag-and-drop from "StudyEvent: Baseline Visit" to the VISITNUM cell in the
"CES:LB" row, the wizard for the first step is reduced to:

As we want to have it for all the visits in the study, we keep the checkbox "View/Edit XPath
expression …" checked. Clicking "OK" then leads to the mapping script:

which we later still want to adapt.

and we see the same incorrect behavior as we have seen for LBORRES before.
So we change the mapping script, either after drag-and-drop, or directly in the mapping script
editor to:

and when then executing the mappings:

we get the same error again.
IMPORTANT: Whether this error occurs for such cases depends on the version of the
SDTM-ETL software. For example, in SDTM-ETL v.5.2, a better algorithm has been
introduced for deriving the paths in the generated XSLT , together with some safeguards to

avoid such issues.

However, also here, we can use a "relative XPath". As the "looping variable" XPath goes
down to the "Item" level, we need to go up 3 levels, and then take the value of the
"StudyEventOID" element, i.e. we use:

and when then executing the mappings, the result is:

So here, it works better, and we also see that there is no data for subject 002, which is exactly
what we want.
We can then further refine the script for "VISITNUM", e.g. as:

It is always a good idea to have an "else" item in such constructs to cover the unexpected
case. For variables that are "numeric", one can e.g. use "-999" and for variables that are
"character", one can e.g. use "TODO". If such unexpected case then occur, this will be visible
in the result data.
After execution of the mappings, the result then is:

Let us now have a look at the SDTM variable LBORNRLO "Reference Range Lower Limit in
Orig Unit"8. If the ODM, it maps to "RBC Normal Range Lo" and "WBC Normal Range Lo".
As we have SDTM annotations in our ODM, when we click the cell "LBORNRLO", the
ODM items for it are immediately marked as a "hot candidate":

We could now do drag-and-drop again, which we can already guess will lead to problems, but
we can also use a "relative path" here. For that, we need to know the identifiers OIDs for
"RBC Normal Range Lo" and "WBC Normal Range Lo". To find them, we can either hold the
mouse over each of them, e.g.:

8 The somewhat strange abbreviation for the "label" is due to the SDTM rule that "labels" may not be longer than
40 characters, which is a relict of SAS Transport 5.

or we can switch to the "OID" view using the menu "View - ODM tree with OIDs", leading
to:

These ODM items are in the same group ("ItemGroup") as the items we are looping over, so
all we need to do is to "go one level up" and then "go one level down" to either
I_LB_RBC_LO or I_LB_WBC_LO.

A double-click on the cell LB.LBORNRLO allows us to start writing a mapping script that
uses relative paths:

Notice that the XPath expressions need to come at the top, not within the if-elsif-else
structure.
Some explanation:
- first we define relative paths for the Value of I_LB_RBC_LO (RBC Normal Range Lo) and
for the Value of I_LB_WBC_LO (WBC Normal Range Lo) respectively

- we then set up an "if-elsif-else" structure
- stating that when the value of LBTESTCD is "RBC", we take the value from "RBC Normal
Range Lo" and when the value of LBTESTCD is "WBC", we take the value from "WBC
Normal Range Lo". This selection if of course important ...

The result then is:

Using "relative paths" of course has the disadvantage that we need to write some mapping
scripts themselves, and cannot always just rely on "drag-and-drop".
Therefore, there is also a more user-friendly mechanism: using "xpathfilter".

Using the "xpathfilter" utility (as of v.4.4)
A new feature introduced in SDTM-ETL v.4.6, and very well documented in the tutorial
"Additional Filtering on Looping Variables" is the "xpathfilter" function.

It allows to do additional filtering after the having generated the XPath for the looping
variable in the traditional way, mostly by simple drag-and-drop.

For our example to exclude data points having a value "UNKNOWN", we just drag-and-drop,
follow the "wizards", and come to the following mapping script for the "looping variable"
LBTESTCD:

So, nothing special, no adding additional "conditions" to the XPath expression either.

To do additional filtering, we can now use the "xpathfilter" function in a separate line (here
line 7):

https://www.xml4pharma.com/SDTM-ETL/tutorials/Filtering_on_looping_variables.pdf

Notice that the result of "xpathfilter" must be stored in the same variable as where the xpath
result is stored, here "$CODEDVALUE". Also please take care of correct use of double and
single quotes, double quotes being used for stating that it is a string, and single quotes for the
string condition in not(@Value='UNKNOWN');

The advantage is that one can then just mostly work with drag-and-drop, so that one does not
need to repeat the exclusion condition to the script for each other variable.
So, for LBORRES, we can just drag-and-drop, accept the proposals made by the wizard,
leading to:

where we see that there is no "filtering" information is present, and also no manual relative
XPath is needed.

For LBORNRLO (Reference Range Lower Limit-Std Units), we can also use drag-and-drop.
but then need to do it twice, once for "Erythrocytes Normal Range Lo" and once for
"Leukocytes Normal Range Lo". Please do not forget to uncheck "Generalize for all Items" in
these cases. The partial generated script, with renaming local variables, then is like:

which does not need to contain any filtering information.

We can then continue differentiation between lower reference range for Erythrocytes and
Leukocytes, e.g. like:

when then executing the mapping scripts, the result is:

so no need for adding XPath stuff for other variables than LBTESTCD.

We can then also simply drag-and-drop from "StudyEvent" in the ODM tree to "VISITNUM"
in the SDTM table, checking "Generalize for all StudyEvents", leading to:

and then do the assignments, e.g.:

and after executing the mappings, the result is:

So one can say that using "xpathfilter" can considerably simplify generating the mappings
without having to worry about additions to the XPath expressions in other variables than the
looping variable, and no need for "relative XPath expressions".
One can however still use such "relative XPath expressions", e.g.:

leading to exactly the same result.

We can also give it a try for excluding a subject. The mapping script for the "looping
variable" LBTESTCD then is:

I.e. we go up 4 levels from the "ItemData" level up to the "SubjectData" level and then take
the value of the "SubjectKey" attribute. The result is:

where we see that there are no records anymore for subject "002", but of course the value
"UNKNOWN" for subject "001" appears again.

We can even accumulate such filters (use with care though), here to exclude as well subject
"002" as values "UNKNOWN" for LBORRES. The script for LBTESTCD is:

with the result:

Please note again that "xpathfilter" can currently only be used for "looping variables".

Conclusions
Filtering in SDTM-ETL on items (visits, forms, subforms, data points) from the ODM tree is
done using XPath expressions that are usually generated automatically from the "drag-and-
drop" and the following "wizards", especially using the "Generalize for" with "Except for …"
and "Only for …" checkboxes and buttons.
Additional filtering can be achieved by adding predicates ("where-statements") using the GUI
by selecting the "View/Edit XPath expression" checkbox.

In the first step of the mapping execution, all the XPath expressions are converted ("under the
hood") to "relative" expressions relative to the "looping variable" which usually is the SDTM

"topic variable". In case the user has very special XPath expressions, this conversion ("under
the hood") may, in seldom cases, lead to unexpected results. In such seldom cases, one may
revert to adding such relative XPath-s itself. This tutorial explains how this can be done, and
demonstrates some usual scenarios.
For the looping/topic variable, one may also add additional filtering using the "xpathfilter()"
function, which is also explained in this tutorial.

